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1. Abstract
In oil reservoir engineering one stage of great interest is the production history matching process, by which the numerical model is

adjusted to reproduce the observed field production. The objective is to find the model parameters which minimize the difference

between calculated and observed fluid production rates. However, the consideration of the rock properties along every cell of the

numerical model that represents the reservoir as design variables would lead to an unfeasible large number of variables and

consequently, a very difficult problem to be solved. To overcome that, we will assume that the permeability field will be stochastic

and represented by a spectral decomposition through Karhunen-Loève expansion (KLE). In this work both linear and nonlinear forms

for KLE expansions will be investigated. The mathematical formulation of this problems leads to nonsmooth, and high cost functions

leading to a difficult problem to be tackled. To overcome that, surrogate models are built and incorporated in a sequential

optimization strategy. Results are presented for two different reservoirs. The potential of the developed tool is discussed.
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3. Introduction
The history matching (HM) problem aims to validate and improve the characterization and fluid flow numerical models for an oil

field. It is a problem of inversion of production data in order to obtain reliable estimates of physical properties of the reservoir (e.g.

porosity, permeability). [1].

The most common used method for history matching is to execute many simulations changing a few parameters at a time in a trial-

and-error fashion. This is a very costly and time consuming approach as in general it requires months of effort and many simulations

to achieve a good solution, and often may not provide a good predictor of future field performance. Automatic HM can be conducted

by optimization techniques, which is in general a more effective way to solve this problem. Given a set of observed data one seeks

the physical properties (design variables) values from which, in a general sense, the difference between the observed and calculated

response is minimized.

In this work, the permeability of the rock reservoir will be the quantity to be adjusted. However, the consideration of the rock

properties along every cell of the numerical model that represents the reservoir as design variables would lead to an unfeasible large

number of variables and consequently, a very difficult problem to be solved. To overcome that, we will assume that the permeability

field will be stochastic and represented by a spectral decomposition through Karhunen-Loève expansion (KLE). In this work both

linear and nonlinear forms for KLE expansions [2] will be used.

The Karhunen-Loeve Expansion (KLE) is a mathematical technique to represent a stochastic field (the permeability, for instance)

with a know covariance matrix, where the stochastic field is represented as a series expansion. The terms of this series are products of

an eigenvalue and its corresponding eigenvector of the covariance matrix and a random standard normal variable. The summation of

this series for all eigenvalues of the covariance matrix with specific samples taken from standard normal distribution provides a

realization of the field that preserves statistical moments (up to the second one, higher ones are possible with more sophisticated

implementations). The main idea of the KLE is to have a parametrization of the random input field in terms of independent standard

normal variables, and this parametrization can be used in optimization algorithms. The covariance matrix of the input field can be

easily computed from realizations of the field of interest the come from a geostatiscal analysis.

One important difficulty of the use of the KLE in reservoir problems is that the covariance matrix can be very large, since it is a

square matrix with number of rows and columns equal to the number of cells in the domain. Computing the eigenpairs of this matrix,

for a large reservoir model, can be a daunting task. It may be unnecessary to compute all the eigenpairs, since the series can be

truncated after some terms and still represent well the statistical properties of the input field. As the KLE requires high computational

resources, kernel Karhunen-Loève expansion (KKLE) is used to minimize this drawback. The KLE will be used in this work,

because not only it computes the eigenpairs of the kernel matrix, which is smaller than the full covariance matrix, but also it can be

extended without serious difficult to preserve higher order moments of the original fields, if so desired, and this can represent

geological structures such facies and channels that are lost when only two points statistics are preserved.

Apart from that, HM by optimization techniques commonly involves several calls of the numerical simulator, which may turn the

optimization task into a very time consuming process. In order to ameliorate such drawback, surrogate models using Kriging based

data fitting [3, 4] will be employed in substitution to the numerical reservoir simulations. In this sense, to tackle the HM problems,

here optimization tools will be used in which the optimization algorithm will operate solely on the substitute model to be constructed

based on simulation results obtained for a limited number of designs generated by a design of experiments technique (DOE) [5]. The

main characteristics of Kriging strategy are: to easily accommodate irregular distributed sample data, and the ability to model

multimodal functions with many peaks and valleys, such the ones obtained for the applications addressed here.



From a proper choice of a DOE scheme [5], followed by the evaluations of the true (high fidelity) function at the samplings, a

Kriging predictor is built in order to evaluate the functions at untried points during the optimization algorithm iterations. The local

optimization algorithm of choice is the sequential quadratic programming (SQP) [6]. This will be embedded here in an interactive

procedure, named sequential approximate optimization (SAO) [7]. A trust region based method [7] is used to update the design

variable space for each local (subproblem) optimization solution (SAO iteration). The required numerical reservoir simulations to

build the Kriging models are performed using IMEX commercial software from [8].

The case study presented here is a waterflooding problem in oil reservoir with one injection and two production wells [9]. The

application illustrates the use of the presented methodology to conduct the HM of the reservoirs from which synthetic permeability

fields created from a given analytic covariance function are used. The results obtained show that our method is able to reconstruct the

unknown permeability distribution in a reliable and efficient way from synthetic data provided by a numerical solution.

4. Representation of The Permeability Field
In this work, the permeability of the rock reservoir will be the quantity to be adjusted. However, adopting the rock properties along

every cell of the numerical model that represent the reservoir as design variable leads to a very difficult problem to be solved as a

large number of design variables appears, when one tries to characterize a real life reservoir. To overcome that we will assume that

the permeability field y will be stochastic and represented by a spectral decomposition through Karhunen-Loève expansion [10, 11,

2]. In this work both linear and nonlinear forms for KLE expansion will be investigated.

4.1. Linear KL

Supposing there is a set of centered realizations of a random field, given by , 1...,
k r

y k N= , where Nr is the number of realizations

and each vector has Nc elements, corresponding in the case of reservoir simulations to the value of the property of interest in the cell

of the reservoir. The covariance matrix of the input field can be computed with
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where it is expected that the number of realizations is large enough to ensure convergence of the matrix. Through the KLE, new

realizations of the field y can be computed in terms of the eigenvalues and eigenvectors of the covariance matrix, as in:

1 2= E� �y (2)

In which � is a vector of random standard normal variables and E, � are respectively, the eigenvector and the diagonal eigenvalue

matrix of the covariance matrix given in Eq. (6). According to Scholkopf et al [19] to obtain the KLE the following

eigvector/eigvalue equation needs to be solved.

Cvv =λ (3)

The solution of Eq. (3) could be very costly as the dimension of C is Nc x Nc, where Nc is the number of cells in the model. This

problem can be overcome applying a kernel technique [2] in which the eigenvector and eigenvalues presented in Eq. (2) are obtained

from the solution of a reduced order (Nr x Nr) eigenvalue/eigenvector problem. The procedure is briefly described below. Pre and

post multiplying Eq. (1) by v, leads to:
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And considering Scholkopf et al [19] assumptions in which the eigenvectors can be written as linear combination of provided

realizations:
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Combining Equations 3, 4 and 5 leads the following form:
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Defining K as the kernel matrix (dimension Nr x Nr), from which each element is obtained as



( ).
ij i j

K y y= (7)

Where yi , yj are realizations belonging to set y = {y1,y2,…,yNr}. Through the above definition, Eq. (6) can be written in a compact

form such as

ααλ 2KKNr =
(8)

Which leads to:

αλα KNr =
(9)

The above equation is known as the kernel eigenvector/eigenvalue equation [19]. Solving such equation the solution of Eq. (3) will

also be obtained using the relation of Eq. (5). Moreover Eq. (9) involves a problem of dimension Nr x Nr while the original one Eq.

(3) has dimension Nc x Nc , as in general Nr << Nc the solution of Eq. (3) is obtained in a much more efficient way.

4.2. Nonlinear KL

In this case, the KL expansion is developed in a space F of order greater than the original space (RNc ) of realizations, where space F

is not linearly related to the original space RNc . This characteristic setting the nonlinear KL expansion, also called nonlinear KKLE

when a kernel technique is used [2]. The basic idea of nonlinear KL expansion can be seen in Figure 1, where realizations are in R2.

]

Linear KL Nonlinear KL

Figure 1. The basic idea of nonlinear KL [2].

As noted in Figure 1, nonlinear KL expansion is performed in high-dimensional space F. The concepts developed in the linear KL

expansion to solve the kernel linear eigenvalue problem Eq. (9) are the same, only now applied in high-order space F.

Considering a nonlinear mapping � which relates the original design space RNc to another space F:

;: FR cN →Φ );(yY Φ= ., FYRy cN ∈∈
(10)

Now the covariance matrix of the space F is given by:
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The size of the covariance matrix W is NF x NF , where NF > Nc . Similarly as was developed for the linear KL expansion:

v Wvλ = (12)

Where v is a eigenvector of W and � is a eigenvalue of W. Instead of solving this equation directly, the eigenvalue problem is

formulated as shown below.

αλα KNr =
(13)

In this case, K is defined as follow.
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Now each element of the kernel matrix is an inner product of vectors in the space F. The dimension of the kernel matrix remains Nr x

Nr, as in the linear KKLE. The inner product calculation can be performed efficiently with the kernel function given by:
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The kernel function k(x,y) calculates the inner product space F directly from the elements in the original space RNc. The kernel

polynomial function used in this work is defined as:
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Where d is the order of the polynomial function. Developing the KL expansion in space F with polynomial of order d corresponds to

preserve the moments of order 2d. In order to preserve not only the moments of order 2d, but also all other moments of the lowest

order, the following kernel function is used:
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After expansion of KL in the space F, the realization will be produced in this space. The realizations need to be at original space RNc,

so it is necessary to develop an inverse mapping such as:

( )Yy 1−Φ=
(18)

The pre-image technique is used to perform the inverse mapping [2, 19].

5. Problem Formulation
HM problem [1] aims to validate and improve the characterization and fluid flow numerical models for an oil field. It is a problem of

inversion of production data in order to obtain reliable estimates of physical properties of the reservoir (e.g. porosity, permeability).

In this sense, given an observed data one much seek the physical properties (design variables) values from which, in the general

sense, the difference between the observed and calculated response is to be minimized.

Mathematically, the HM problem is formulated as

Minimize ( )( )errorf y ξ

Subject to: 1,L U
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In which
error

f is a function that quantifies the difference between the results obtained when considering the two models (observed

and calculated), y is the permeability field defined represented by K-L expansion, and ndv is the total number of design variables and

,L U

i i
ξ ξ , are respectively, it’s lower and upper bounds values (that could be stochastic or not) .

In the present work the output response considered is the cumulative oil distribution and the metric consider for
error
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Where Np is the number of producers, fi is the calculated cumulative oil production at nth time step, and
i

n

obsd is the observed

cumulative oil production at nth time step and t is the total number of time steps.

6. Surrogate Models
Surrogate models are built to provide smooth functions with sufficient accuracy for fast evaluations for both uncertainty

quantification and in the optimization process.

Kriging [3, 4] methodology is considered in this work. The central idea of this scheme is to assume that errors in the model are not

independent but rather exhibit spatial correlation related to the distance between corresponding points modeled by a Gaussian process

around each sample point.

The main advantages of this scheme are easily to accommodate irregularly distributed sample data, and the ability to model

multimodal functions with many peaks and valleys. Moreover, kriging models provide exact interpolation at the sample points.

Kriging is a data fitting based model, the first step is to generate the sampling points. These points in the design space are determined

by DOE [5] approach. In this work Latin Centroidal Voronoi Telsselations (LCVT) is used [12]. Next, the kriging fitting scheme is

used to develop the predictor and error expressions in order to evaluate the functions at untried design points. Details of such

procedure can be found elsewhere [4, 5, 9, 13, 14].



7. Optimization Strategy
To tackle the problem formulated in section 2 the SAO methodology [3, 7, 14] is employed. In this procedure, surrogate smooth

functions are used in place of the computationally expensive and/or nonsmooth functions in a sequence of optimization steps, which

are confined to a small region of the parameter space. To update the design space of each optimization subproblem a trust region

based scheme [7, 15] is used.

Mathematically, each subproblem k is defined as:

max
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In above equations, ˆ ( )
k

f x and ˆ ( )k
g x are respectively the approximated (surrogate) objective and constraints functions, k

cx is the

center point of the trust region, kΔ is the width of the trust region and k
lx , k

ux are respectively the lower and upper bounds of the

design variables for SAO iteration k.

7.1 SAO Algorithm

Each subproblem described above defines a SAO iteration. To update the trust region size kΔ for each optimization subproblem we

considered the approach described in Alexandrov et al [7] which takes into consideration the accuracy of surrogate functions against

the true functions. The main steps involved in the computations are:

1. Compute the expensive and/or nonsmooth objective function and constraints at the central point in the subregion.

2. Construct surrogate model in the subregion.

3. Optimize within the subregion using the surrogate objective function and constraints.

4. Compute the true objective function and constraints at the optimum identified in Step 3.

5. Check for convergence.

6. Move/shrink/expand the subregion according to the accuracy of the approximated model compared to the true function and

constraint values.

7. Impose C0 local consistency.

8. Check for overall optimization convergence. If it is achieved stop the SAO procedure; otherwise return to Step 3.

8. Example
In this section the tools described in this paper are employed for a study case considering both linear and nonlinear KL expansion to

represent the permeability field. The studies are conducted using DAKOTA platform [17]. The SAO runs use SQP/NPSOL as the

optimizer of choice.

8.1 Problem Definition
The investigated example is the one indicated in Figure 2. It has three wells: two producers and one injector. The injector rate is fixed

at 24 m3/day while the sum of the rates of the producers is fixed at 24 m3/day with a prescribed minimum button hole pressure (BHP)

of 50 Kgf/cm2. The reservoir has a volume of 510 x 510 x 4 m3 which is discretized considering a 51 x 51 x 1 grid. The production

time considered used for the HM is ten years and a further extrapolation of 6 years is considered for future prediction. The

realizations were generated considering the following covariance function [18]:
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In the above equation (x1,y1) , (x2,y2) are the coordinates of two generic points on the grid, b1 e b2 are correlation length and �E is the

standard deviation. The following values are attributed for the studies: b1= 6 , b2= 9 and �E = 1. A Part from that, in the process of

generation of the realizations it was considered two regions with different permeability mean values. A total of 1000 realizations

were generated, from which one of them is chosen as the observed case. Figure 3 illustrates some possible realizations for the studied

case. The selected permeability field (observed case) is illustrated in Figure 4.



Figure 2. Reservoir model.

Figure 3. Possible realizations for the case study (logarithmic scale).



Figure 4. Realization chosen as observed case.

To conduct optimization both linear and nonlinear KKLE (Kernel Karhunen-Loève expansion) with ten principal component analysis

is considered to represent the permeability field. The initial design variables is (�1 = 0,5 and �i = 0, i = 2,.., 10). The lower and upper

bound values are respectively (�L
i = -8 , i = 1,…,10), (�U

i = 8 , i = 1,…,10).

8.2 HM with linear KKLE 
For this specific case the initial permeability field is indicated in Figure 5. The normalized initial value for ferror is 0.5276. The

optimization results are show in Table 1.

Figure 5. Initial estimate of the permeability field.

Table 1. Optimum Values, HM with linear KKLE.

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 ferror

0.5430 2.9719 2.2632 1.5829 3.0909 -0.5986 3.3174 -1.4232 2.4135 3.5417 0.0015

As can be observed, at the end of the optimization process the objective function has decrease substantially. The optimum converge

in 87 SAO iterations.

The cumulative oil production obtained with the permeability field using the ten optimum principal components of the Table 1 are

plotted (red) in Figure 6. For comparison purposes the initial (green) and observed (blue) cumulative oil production are also plotted

in this figure. As can be seen both matching and future prediction were satisfactory. However the calculated permeability field

(Figure 7) is very different from the one taken as real (Figure 4). This is mainly observed in the central region of the field and it

happened due to the limitation of the linear KKLE. In order to overcome that and with the aim to obtain a field with closer

characteristics of the observed field the nonlinear KKLE is considered next to solve this problem.



Figure 6. Curves of cumulative oil production obtained in the history matching process.

Figure 7. Permeability Field obtained in the history matching process.

8.3 HM with nonlinear KKLE 
When considering the nonlinear KKLE the initial permeability field considered is the one indicated in Figure 8. A much faster

convergence was observed for this case, tacking only 12 SAO iterations. The normalized initial value for ferror is 2.8638. The

optimum results are those indicated in Table 2.

Table 2. Optimum Values, HM with nonlinear KKLE.

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 ferror

0.4927 0.2839 0.0939 -0.2991 0.2377 -0.1478 -0.0670 0.2377 -0.2613 0.4022 0.0009



Figure 8. Initial estimate of the permeability field.

Figure 9 ilustrates respectivaly the initial (blue), observed (green) and calculated (red) commulative oil distributions. As before in the

linear case, the calculated curve exactly matches the observed case, meaning that the use of ten KL principal components suffice to

capture the provided field information. Also, means that a reliable prediction for future field performace can be obtained for the oil

field production considering the obtained � parameters. This is easily observed in the extrapolation part of the curve, in which the

calculated prediction matches the observed production prediction for the extra investigated 6 years (2016 – 2022).

Figure 9. Curves of cumulative oil production obtained in the history matching process.

The permeability Field obtained with the optimum coefficients of the Table 2 is indicated in Figure 10. As can be seen, differently

from the linear case, this realization captures the main features of the observed one such as the permeability contrast of two regions

as well as the low and high permeability fields zones. Moreover, the total number of numerical simulation for the first case (linear

KKLE) was 5676 against only 726 in the nonlinear case.



Figure 10. Permeability Field obtained in the history matching process.

9. Conclusions
The history matching in oil reservoirs was here clearly pointed as a complex problem. The challenges in this field are so diverse,

involving the mathematical, physical and computational aspects. The main conclusions of the work are presented below:

1. The use of surrogate models is a computationally feasible alternative for solving history matching problems in oil reservoir

where the gradients of the problem are not available or will require a high computational cost to be obtained.

2. The SAO methodology used together with KKLE method when applied to history matching problems achieved consistent

results. The nonlinear KKLE method could capture complex geological characteristics of the permeability field.
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