
EngOpt 2012 – 3rd International Conference on Engineering Optimization
Rio de Janeiro, Brazil, 01 - 05 July 2012.

Constraints Handling for Hybrid Algorithms in Waterflooding Optimization Problem

Leonardo Correia de Oliveira¹, Silvana Maria Bastos Afonso¹, Bernardo Horowitz¹ and Afonso Celso de Castro Lemonge²

¹Universidade Federal de Pernambuco – Dept. de Engenharia Civil – Estruturas
Av. Acadêmico Hélio Ramos, S/N, Recife – PE – CEP 50740-530, Brasil

²Universidade Federal de Juiz de Fora – Faculdade de Engenharia – Dept. de Mecânica Aplicada e Computacional
Campus Universitário, Martelos, S/N, Juiz de Fora – MG – CEP 36036-330, Brasil

Email: leonardo.oliveira@ufpe.br, smb@ufpe.br, horowitz@ufpe.br, afonso.lemonge@ufjf.edu.br

Abstract

In oil Reservoir Engineering applications, a problem of great interest is the dynamic optimization of
waterflooding management. In this work the net present value (NPV) is taken as the function to be maximized. The
design variables are the allocated rates at producers and injectors wells. Usually the concession period is subdivided
into a number of control cycles, whose switching times are fixed and the well rates are applied. Alternatively, the
switching times can be considered as design variables in the optimization formulation problem. This assumption 
increases flexibility.

In management and can decreases the total number of variables for similar recovery efficiency. In despite of
this, the formulation of this problem leads to a highly nonlinear, multimodal objective function. An adequate choice
to solve this problem is to consider a global optimization strategy. Due to the cost of the reservoir analysis and the
convergence behavior for this kind of algorithms, a hybrid optimization strategy is proposed considering surrogate
models. The hybrid strategy combines different methods at different stages of the process in order to exploit the best
features of each methodology. The focus is to balance a global search process with the precision and efficiency of a
local search procedure. Here, the global search is driven by the genetic algorithm (GA) and the local search is driven 
by the sequential approximation optimization (SAO) method. As such algorithm is suitable to solve unconstrained 
problems, techniques to handle the constraints of the waterflooding problem are proposed in this work. Different
strategies may be used to include general constraints. Among them it is considered an adaptive penalty method which 
does not require any type of user defined penalty parameter and uses information from the population. Moreover, to
make the global search procedure more effective a filter scheme is proposed in which the level of feasibility of the
initial population is assured.
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1. Introduction

In reservoir engineering a problem of great interest is the management of the field [1]. Reservoir simulation is used extensively to 
identify opportunities to increase oil production in heavy oil reservoirs. In this scenario waterflooding is the most common method
used to improve oil recovery after primary depletion. The management of the field can be formulated as an optimization problem in
which the rates in the producers and injection wells are obtained fulfilling specific constraints.

From a point of view of economics, profitability is usually chosen as the objective function of the problem, where the
maximization of the net present value can be seek, for example. In the problem formulation, usually the concession period is divided 
into control cycles, whose flow rates from each well are exchanged in fixed times during the period. The time when the exchanges
are applied can also be considered as design variables. Under such consideration, the flexibility in the management is greatly
increased. This assumption, however provides a mathematical formulation that leads to an objective function with multimodal
characteristics.

In general, the numerical simulation of above application has high computational cost, even considering the hybrid strategy.
Therefore the multiple numerical simulations required in the optimization procedure are prohibitively expensive. In this context,
approximation strategies appears as a powerful tool to overcome the abovementioned problem. Here, the simplified model will be
used to provide insight on the overall trends of the objective and constraint functions over the investigated design space. In this work 
we will consider kriging data fitting approximation approach.

The optimization problem described above would be adequate to be solved considering a global optimization strategy. As natural 
choices for this type of solution emerges the class of evolutionary algorithms such as genetic algorithms, swarms methodologies
among others [24]. In general such algorithms, present fast convergence at initial stages of global search, but in the neighborhood of
the global optimum, the search process becomes very slow. To overcome that, mathematic programming algorithms would be ideal
to be combined with global strategies as they provide very fast convergence around a pre specified initial point.

The resulting combined tool, the hybrid strategy, will provide a balance between a global search process and the efficiency of a
local process. In this sense, such strategy appears as a promising scheme to solve the dynamic optimization of waterflooding 
management problem, as a computation reduction cost can be obtained without comprising the global search properties. As global
strategy the genetic algorithm (GA) [7] is used and is combined to a local strategy that uses a sequential approximation optimization



(SAO) [15, 14].
The surrogate model is applied in a different way on each strategy considered during the optimization process. When the global 

search is executed, the built surrogate model covers the whole domain, which might be updated during the search. When the local
search is executed, the surrogate model is applied on a iterative process, which decomposes the original problem into a sequence of
optimization subproblems, confined on small subregions of the domain, called trust regions.

In general, evolutionary algorithms are suitable to solve unconstrained problems, but there are some techniques which make it
suitable to handle the constraints. To handle the constraints here, it was considered an adaptive penalty method which does not
require any type of user defined penalty parameter and uses information from the population. Such implementation is compared with 
results obtained using an ordinary penalty method found in MATLAB global optimization toolbox. Moreover, to make the global
search procedure more effective a filter scheme is proposed in which the level of feasibility of the initial population is assured.

2. Waterflooding Problem

The waterflooding problem is by far the most commonly used method to improve oil recovery after primary depletion. In spite its
many favourable characteristics, reservoir heterogeneity; permeability contrast in particular, can adversely impact the performance of
water flooding. Moreover, it is well known that the presence of high permeability streaks can severely reduce the sweep efficiency
leading to an early water arrival at the producers and by-passed oil. One approach to counteract the impact of the heterogeneity and
to improve water flood sweep efficiency is through optimal rate allocation to the injectors and producers.

The time when the control cycles are exchanged can be considered as design variables, increasing the flexibility of the problem.
As a consequence, the total number of variables can be increased, but this consideration would lead to a smarter optimal water flood
sweeping, the necessary pressure on reservoir, and the shutting off some wells. Due to this additional flexibility, it is possible to
obtain an optimal management adopting less control cycles.

The dynamic optimization of procedure scheduling, considering the NPV as the objective function and constraints at platform’s
total rate is formulated as follows:
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In above equations, d is the discount rate applied on capital, T is the concession period, and Ft is the cash flow at time t. The term
P and I refer to production wells and injection wells, respectively, the u vector represents parameters that cannot be controlled, as
rocks and fluids’ properties on reservoir and, at least, there are xp,t and xΔt,k as design variables. The xp,t variable is the allocated rate
for well p at time t, given by:
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where qp,t is the well rate, Qprod,max is the maximum allowed total fluid rate o production wells and α is the ratio determined between 
the Qprod,max and the maximum allowed total water injected, represented by Qinj,max.
The xΔt,k variable represents the time variables, where the exchanges on wells’ rates will be applied, and it is defined in normalized
due to T, represented by:
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3. Approximation

In the process of surrogate model construction the challenge is to provide a substitute model with sufficient accuracy. Kriging
approximations (in local or in global context) [19] will be considered here. The central idea of this scheme is that the sample
response values exhibit spatial correlation with response values modeled by a Gaussian process around each sample location. The
main advantages pointed for such scheme are: the ability to accommodate irregularly space data, the ability to model functions with
many peaks and valleys together with the exact interpolation of the given sample response.

As this is a data fitting based model, the first step is to generate the sampling points. A design of experiments (DoE) approach
determines the points in the design space. To choose a good sample is important to obtain a good surrogate model because the model
created is strongly influenced by the point location. The reason for this is that each point from the sample is evaluated in the real



function and the results are used to create the surrogate model. The appropriate sample considers a minimum number of points but
ensures accuracy.

The samples can be obtained by a variety of available methods, including Latin Hypercube Sampling (LHS), Orthogonal Array
(OA), Centroidal Voronoi Tesselltion (CVT), Quasi Monte Carlo (QMC), Simple Ramdom Sample (SRS) [2].

For these methods, one measure of a point set’s uniformity of precision onto all the coordinates axes is called discrepancy. As
projection uniformity increases, discrepancy decreases. LHS is a lower-discrepancy sampling method than CVT is. Methods
specifically designed with low discrepancy in mind are the quasi- or sub-random low-discrepancy sequence methods [21]. Though
CVT tends to have better volumetric uniformity than the sequence methods, which helps its relative performance in other areas, it
also has much higher discrepancy, which deteriorates its relative performance. Therefore, a hybrid of CVT and LHS has recently 
been formulated [8] which appears to have both lower discrepancy than pure CVT and higher volumetric uniformity than pure LHS.
The method is called “Latinized” CVT (LCVT) [20]. The LCVT method is considered to provide the samples on this work.

The kriging fitting scheme is the next step used to develop the predictor and error expressions in order to evaluate the functions at
untried design points. Details of used implementation can be seen elsewhere [17, 4].

4. Optimization Strategies

To tackle the solution of the problem previously formulated, global and local optimization strategies will be combined with a
numerical reservoir engineering simulator in a unique computation tool. The output of interest is high nonlinear, with multimodal
characteristics. Also depending on the well constraints settings, the NPV response can be discontinuous as indicated in reference
[17].

Algorithms suited for this such as GAs [7] are often expensive since they usually require many function evaluations and are very
slow to reach convergence. Thus, these algorithms should only be used to identify promising optimum areas in the design space.
Once such regions have been found, a local scheme can be used to converge on precise optimum. This is the hybrid approach which 
will be here built combining the GA and SAO:

4.1. Global Strategy

As previously mentioned, GA will be the global strategy considered on optimization process. GA’s, as powerful and broadly
applicable stochastic search and optimization techniques, are perhaps the most widely known types of evolutionary computation 
methods today. In the past decade the GA community has turned much of attention to optimization problems in industrial engineering
resulting in a fresh body of research and applications [12].

In general, a genetic algorithm has five basic components, as summarized by Michalewicz [23]:
1. A genetic representation of solutions to the problem;
2. A way to create an initial population of solutions;
3. An evolution function rating solutions in terms of their fitness;
4. Genetic operators that alter the genetic composition of children during reproduction;
5. Values for the parameters of GA.
In general, GA’s follow the steps below:
1. Generation of initial population;
2. Evaluate the fitness of all individuals in population;
3. Check for convergence;
4. Evaluation of reliability of each chromosome;
5. Application of genetic operators to generate new population (selection, crossover and mutation);
6. Return to step 2 and repeat the process until the convergence is reached.
The GA adopted in this work was the one found in global optimization toolbox from MATLAB [18].
It is well known that evolutionary algorithms have problems to deal with constrained optimization, and it is not different in GA.

Some techniques have been developed in an attempt to overcome this difficulty. In most applications of GAs to constrained 
optimization problems, the penalty function method has been used [11]. In this work was tried an adaptive penalty method which 
does not require any type of user defined penalty parameter and uses information from the population. Moreover, to make the global
search procedure more effective a filter scheme is proposed in which the level of feasibility of the initial population is assured.

4.1.1. Constraints handling

Constraint handling methods used in classical optimization algorithms can be classified into two groups: (i) generic methods that
do not exploit the mathematical structure (whether linear or nonlinear) of the constraint, and (ii) specific methods that are only
applicable to a special type of constraints. Generic methods, such as the penalty function method, the Lagrange multiplier method,
and the complex search method [10, 8] are popular, because each one of them can be easily applied to any problem without much 
change in the algorithm. But since these methods are generic, the performance of these methods in most cases is not satisfactory.

However, specific methods, such as the cutting plane method, the reduced gradient method, and the gradient projection method 
[10, 8], are applicable either to problems having convex feasible regions only or to problems having a few variables, as the strategy
of choice for constraints handling.

Since GAs are generic search methods, most applications of them to constraint optimization problems have used the penalty
function. The penalty function approach involves a number of penalty parameters which must be set right in any problem to obtain 
feasible solutions. This dependency of GA’s performance on penalty parameters has led researchers to devise sophisticated penalty 
function approaches such as multi-level penalty functions [3], dynamic penalty functions [9], and penalty functions involving 
temperature-based evolution of penalty parameters with repair operators [22]. All these approaches require extensive experimentation



for setting up appropriate parameters needed to define the penalty function [11].
In special situations, closed genetic operators (in the sense that when applied to feasible parents they produce feasible offspring)

can be designed if enough domain knowledge is available [13]. Special decoders [16] — that always generate feasible individuals
from any given genotype — have been devised, but no applications considering implicit constraints have been published. In this
work is considered a chromosome repairing method for the linear constraints presented in Eq. (1) with an adaptive penalty method,
introduced for Barbosa and Lemonge [5] in case of infeasible generated offspring.

4.1.2. Chromosome repairing

For this process, initially a randomly population is generated. After this, it’s verified the level of violation related to the linear
constraints defined in the problem presented in Eq. 1. From this verification it is created two parameters (λl, λu). The first parameter is
called parameter of inferior activation, which refers the individual located in the unfeasible region to activate the constraints by lower
bounds, as described in Eq. 4.

( ) = bl lA x (4)

The second parameter is created in a similar way. It is called parameter of superior activation, which refers the individual located 
in the unfeasible region to activate the constraints by upper bounds, as described in Eq. 5.

( ) = bu uA x (5)

With these activation parameters, a λ, called parameter of feasibility, is randomly generated, between the parameters defined
above. These parameters are generated as many times as unfeasible individuals are presented in the initial population. The use of λ
guarantees that the imposed constraints will not be violated, but it is not correct to affirm that the individual is completely in feasible
region because it might violate the boundaries of design region.

After the application of the parameter of feasibility, the coordinates of the individual are ranked to be corrected if necessary. The
coordinates are ranked in a descendant order. In case of any coordinate out of the bounds, redistribution is made to send the
individual to the feasible region.

In case of violated upper bound, the excess is relocated in other coordinate as the rank goes on. When more than one coordinate
violate the boundaries, the excess is summed to be relocated. When the lower bound is violated, it is taken the complement from the
follow coordinates unless it reaches the bound too.

After unfeasible individual be located in the feasible region its coordinates are relocated in the original position of the
chromosome. To consider this process is crucial for creating the initial population, since the GA presents difficulty to solve the
problem proposed in this work, when it was used without any feasible individual in the initial population. In various tests considered,
the optimization process has been finished without any solution found

It is important to mention that the above procedure is used to create the initial population for GA and to create some feasible
samples for the global surrogate model used in the global search of the optimization process.

4.1.3. Adaptive Penalty Method (APM)

The adaptive penalty method (APM) scheme presented in Barbosa and Lemonge (2002) [5] adaptively quantifies the penalty
coefficients of each constraint using information from the population such as the average of the objective function and the level of
violation of each constraint. The fitness function is written as:
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and ( )f x is the average of the objective function values in the current population. In Figure 1 feasible as well as infeasible

solutions are shown. Among the six infeasible solutions, the individuals #3, #4, #5 and #6 have their objective function values
(represented by opened circles), less than the average objective function and, according to the proposed method (see Eq. 7), will have

( )f x given by ( )f x . The solutions #1 and #2 have objective function values which are worst than the population average and

thus will have ( ) ( )f fx x .



Figure 1. A pictorial description of the function ( )f x .

The penalty parameter is defined at each generation by:
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and ( )jv x is the violation of the l-th constraint averaged over the current population. The idea is that the values of the penalty

coefficients should be distributed in a way that those constraints which are more difficult to be satisfied should have a relatively
higher penalty coefficient. Details of the proposed definition can be seen in [13]. In the present work, this methodology was
implemented in MATLAB environment to be used with GA

4.2. Local Strategy

The SAO [15, 14] methodology is adopted as local strategy on optimization process. SAO methodology decomposes the original
optimization problem into a sequence of optimization subproblems, confined into small subregions of optimization design space.
Surrogate functions (low-cost) are created and used by the optimizer. A trust region based method is used to update the design
variable space for each subproblem (SAO iteration).

Each subproblem defines a SAO iteration. To update the trust region size for each optimization subproblem we considered the
approach described in [14] which takes into consideration the accuracy of surrogate functions against the true functions. The main 
steps involved in the computations are:

1. Compute the expensive and/or nonsmooth objective function and constraints at the central point in the subregion;
2. Construct surrogate model in the subregion;
3. Optimize within the subregion using the surrogate objective function and constraints;
4. Compute the true objective function and constraints at the optimum identified in step 3;
5. Check for convergence;
6. Move/shrink/expand the subregion according to the accuracy of the approximated model compared to the true function and

constraint values;
7. Impose local consistency;
8. Check for overall optimization convergence. If it is achieved stop the SAO procedure; otherwise return to step 3.

5. Examples

Firstly some results of the studies with APM are presented, considering only GA. These tests were considered to check if APM
works properly when it coupled with the GA from MATLAB global optimization toolbox. The problem considered was the
optimization of a welded beam design.

The objective in this problem is to minimize the cost C(h, l, t, b) of the beam where h ∈ [0.125, 10], and 0.1 ≤ l, t, b ≤ 10, subject
to constraints on shear stress (τMAX), bending stress in the beam (σMAX), buckling load on the bar (Pc), end deflection of the beam
(δMAX), and side constraints. In Figure 2 the welded beam assembly is shown with its main variables.

Figure 2. Welded beam structure.



The problem can be formulated as follows:
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To test the implemented methodology, the results found were compared with results obtained using the tools from global
optimization toolbox from MATLAB. It uses the Augmented Lagrangian GA (ALGA) to solve nonlinear constraints problems
without integer constraints. For statistics calculation a total of 50 runs were performed.

Table 1 shows a comparison between the obtained results where the first row represent the results obtained using APM
methodology with MATLAB’s GA, and the second one the results obtained using ALGA from MATLAB. The best value found is
presented in the reference Bernardino et al. (2007) [5] and corresponds to a final cost equal to 2.38122.

Table 1. Results obtained in GA’s test with APM and ALGA
Cons. handling

method Best Average Std. Dev Worst Function eval.
(for best)

APM 2,45628 4,54617 0,99661 6,86426 76800
ALGA 2,47504 4,46035 1,39126 7,96005 102200

As can be seen, the results presented by APM were better than the ones presented by ALGA, considering the accuracy with the
reference and the number of function evaluation.

Now it is presented the proposed hybrid combinations applied for a case study presented in [6]. The characteristics of the
problem are quite simple, as the main application purpose was to study and evaluate the basic optimization problem behavior under
simplified conditions easier to control. With simple geometry, the problem has as design variables the wells rates and the time that
the control cycles will be exchanged. The Eqs 2 and 3 describe these variables.

The reservoir studied in this problem has the characteristics shown on Table 2. In Figure 3 can be seen the wells arrangement
(injection and production wells) and the regions separated according to the horizontal permeability in the reservoir. The hor izontal
permeability (kh) in the injection well (I-1) region is 1000 mD, the kh near the production well P-1 is 500 mD while near the
production well P-2 is 1500 mD.

Table 2. Characteristics from the reservoir considered.
Simulation mesh 51 (510 m) x 51 (510 m) x 1 (4 m)
Porosity 30%
Vertical permeability vertical (kv) 10% de kh
Rock compressibility at 200 kgf/cm² 5 . 10-5 (kgf/cm²)-1

Contact between fluids Without contact WOC and GOC
Pressure of saturation (Psat) 273 kgf/cm²
Viscosity at Tres, Psat 0,97 cp
Gas-Oil formation ratio (GOFR) 115,5 m³/m³ std



Figure 3. Permeability regions.

For this problem, Qprod,max may not exceed 40 m³/day, and the individual flow cannot exceed 30 m³/day. The Qinj,max may not
exceed 44 m³/day. Regarding the concession period, the total period considered is 16 years.

To build the global surrogates a total of 5nvar samplings are selected over the investigated domain. When using SAO strategy,
local surrogates are built considering (2nvar + 1) samplings as suggested in [6]. The global, local and hybrid strategies described in 
this work are used to solve this particular example.

In this problem, 2 cases are considered adopting different management strategies. The cases studied are:
Case 1 – Non-full capacity operation with fixed time to execute the control cycles; this case considers 3 control cycles only but

with the consideration of the non-full capacity operation the complexity of the problem is greatly increased as
commented before (by the consideration of a great number of constraints);

Case 2 – Non-full capacity operation with variable time to execute the control cycles; this case considers 3 control cycles, as the
previous case, and also considers the time definition for the control cycles as design variables. This is the most complex 
case because of the consideration of the constraints and the multimodality imposed by variables of time. For each case
the number of control cycles and design variables involved are summarized on Table 3.

Table 3. Cases studied
Case Control cycles Variables

1 3 9 (6 qprod + 3 qinj)
2 3 11 (6 qprod + 3 qinj + 2 t)

Tables 4 and 5 are shown the results obtained by the hybrid strategy considering only GA with APM, and the reference results
obtained by SAO technique is also shown.

Table 4. Obtained results in case 1.
f(x) (106 U. M.) function evaluations

SAO 1,72299 421 
Hybrid 1,72267 441 

Table 5. Obtained results in case 2.
f(x) (106 U. M.) function evaluations

SAO 1,73314 673 
Hybrid 1,72921 291

According with the above results, it can be seen that the solutions obtained by hybrid strategies were satisfactory. The results
obtained in case 2 presents a low discrepancy in relation to the reference value but the number of function evaluation is less than the
half of the one required by SAO.

Other studies on problems involving reservoir with characteristics similar to real situations, aiming to verify the tool proposed for
solve such problems are current being analyzed.

6. Conclusion

Waterflooding management problem was conducted in this work by a hybrid strategy considering surrogate models. These
methodologies appear to be a good way to deal with this kind of problem, when considering the characteristic of the function 
involved on this problem formulation. The cases considered involve a high nonlinear objective function and also presents several
constraints functions. These two aspects together turn out the problem too difficult to be solved by the EA’s, in charge of the first
stage of the optimization. To improve the performance of the GA considered in global search process, some tools were considered to
increase the capability to find a good feasible solution.

As can be seen in the results, hybrid converged to reported reference solution with fewer function simulation runs. The local
search executed on hybrid methodology depends on the initial point, which is given by the global search; if a bad solution is given as



initial point to the local search algorithm hardly a good solution will be found.
It is important to emphasize that the solution provided by the reported reference (SAO algorithm) is a result found after many

tries in order to find a good solution, as typically when local search algorithms are used. The hybrid methodologies considered in this
work overcome then need to perform several initial points tries on reservoir optimization problems.
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