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One of the major difficulties in applying optimization to reservoir engineering problems is that each function
evaluation requires a complete simulation which is computationally expensive. Moreover, some problems
are known to be multimodal with several local minima. A common approach to tackle these problems is to
construct cheap global approximation models of the responses often called metamodels or surrogates. These
are based on simulation results obtained for a limited number of designs using data fitting. The optimization
algorithm is coupled to the cheap metamodel. In this study a two-stage approach is employed based on the
efficient global optimization algorithm, EGO, due to Jones. First an initial sample of designs is obtained using
Latin hypercube. Parallel simulation runs for the initial sample are used to construct a Kriging metamodel. In
the second stage the metamodel is used to guide the search for promising designs which are added to the
sample in order to update the model until a suitable termination criterion is fulfilled. The selection of designs
which are adaptively added to the sample is based on the maximization of the expected improvement merit
function which balances the need for improving the value of the objective function with that of improving
the quality of the metamodel prediction. In this study the original EGO algorithm is modified to exploit
parallelism. The modified algorithm is applied to a polymer injection optimization problem. This eight-
variable problem maximizes economical return by controlling the starting time and slug duration in each
injector well. In the presented example a parametric study was conducted varying oil price. It is concluded
that polymer flooding is feasible for oil prices above US$20.00/STB and gains increase with oil price.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Polymer injection in petroleum reservoirs has been used world-
wide for decades where polymers act basically by increasing the
injected water viscosity. The management of this Enhanced Oil
Recovery (EOR) method requires determination of optimal injection
planning based on reservoir simulation. The injection planning
consists in determining concentration of polymer in water and, for
each injector, time of injection beginning and duration of slugs. This
can be formulated as an optimization problem whose objective
function is the economical return of the proposed EOR method as
compared to traditional waterflooding scheme. As it is a multimodal
optimization problem, a global search strategy should be preferably
used to solve it.

Every trial of a polymer injection design requires a complete reservoir
simulation for its assessment. As simulations are computationally
expensive, their direct use in optimization algorithms is infeasible. A
common approach to tackle this problem is to construct cheap global

approximation models of the responses often called metamodels or sur-
rogates. These are based on simulation results obtained for a limited
number of designs using global datafit techniques such as Kriging applied
to deterministic computer code outputs commonly called DACE (Design
and Analysis of Computer Experiments) (Sacks et al., 1989). Computation
of all necessary function values required by the optimization algorithm is
performed using the cheap metamodel. The ability of the metamodel to
tame general nonsmoothness of the simulation responses is recognized
(Eldred and Dunlavy, 2006). Should nonsmoothness become more
significant specific techniques may have to be employed (Forester et al.,
2006).

In this study a two-stage approach is employed based on the
efficient global optimization algorithm, EGO (Jones, 2001). The EGO
algorithm has been recently applied to reservoir engineering for
reservoir characterization as well as EOR (Queipo et al., 2000, 2002;
Zerpa et al., 2005). First an initial sample of designs is obtained using
some design of experiments (DOE) technique, such as Latin hypercube
(Giunta et al., 2003). Simulation runs for the design points are used to
construct themetamodel. In the second stage themetamodel is used to
guide the search for promising designs which are then added to the
sample in order to update the metamodel until a suitable termination
criterion is fulfilled. The selection of designs to be added to the sample
is called infill sampling criterion (ISC) (Sasena, 2002). ISC should
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balance the need of improving the value of the objective function with
that of improving the quality of the prediction so that one does not get
trapped in a localminimum. Considering the computational cost of the
simulation and the availability of parallel computing it is highly
desirable for the ISC to include in each iteration multiple promising
designs whose simulation may be performed concurrently. In this
study the ISC proposed by Jones et al. (1998) that uses the expected
improvement merit function is modified to exploit parallelism.

Initially the polymer injection problem is described and then the
optimization formulation is given. Theoptimization strategy is described
starting with the construction of the DACE surrogate model followed by
the original EGO algorithm and the proposed parallel ISC. Finally, an
example application is presented to demonstrate the potentials of the
proposed methodology.

2. The polymer injection problem

Polymer flooding uses high molecular-weight polymer to improve
waterflooding performance by increasing the viscosity of the injected
water thereby resulting in more favorable mobility ratios. It has been
demonstrated to accelerate oil production while delaying water break-
through, resulting in a higher recovery without affecting the residual oil
saturation. The major aspects to take into account in numerical modeling
are the mobility control and polymer retention (Kaminsky et al., 2007).

The main beneficial effect is the increase in water viscosity that is a
function of polymer concentration in water. Another important aspect to
mobility control is the reduction in absolute permeability due to the
mechanism of polymer retention in reservoir rock. In the model, this
reduction is a function of concentration of polymer retained by the rock.
The polymer retention effects are due to two different mechanisms:
adsorption by the rock surface andblocking of smaller caliber pores by the
polymer molecules, resulting in an inaccessible porous volume to the
fluids. From the experimental point of view it is difficult to quantify these
two mechanisms separately. Therefore the retention effects are modeled
by a single non-linear adsorption isotherm. The mass conservation equa-
tions of the problem are those of blackoil model modified to include the
polymer mass transport. Polymer reduced porosity is a fraction of the
original rock porosity modeled by the inaccessible pore volume constant,
IPV: ϕ̄=(1− IPV)ϕ. The modified absolute permeability tensor is a frac-
tion of the original tensorwhich depends on the residual resistance factor,
RRF, and the ratio between actual adsorbed polymer concentration and
maximum adsorptive capacity of the rock, AdMAX. A linear model is
adopted for water viscosity which is a function of polymer concentration
in the water phase.

3. Problem definition

In this work the chemical choice and concentration, as well as
injection water rates, are considered fixed. The design variables for
each injector are the starting time and slug duration:

x2i−1 = startingtimeforwell i
x2i = slugdurationforwell i gi = 1…niw ð1Þ

where niw=number of injector wells. In order to define the objective
function, let:

BaseCasefCWI0 = cumulativewater injection
COP0 = cumulativeoilproduction

: ð2Þ

The Base Case is the reference where the water injection rates as well
as well constraints are kept the same for the optimization problem
simulation except no polymer is injected. A simple objective function
used in this study is given by:

RI xð Þ = COP xð Þ−COP0ð Þ·op− CWI xð Þ−CWI0ð Þ·wic−CPI xð Þ·pc ð3Þ

where: RI(x) = relative improvement of injection schedule; COP(x),
CWI(x) = cumulative oil production and cumulative water injection
from simulation; CPI(x) = cumulative polymer injection; op = oil
price; wic = water injection cost and pc = polymer cost. An
alternative objective function taking into account discounted cash
flow values is given by:

NPVRI xð Þ = ∑
T

τ=0

1
1 + dð Þτ Fτ xð Þ

� �
with : Fτ xð Þ = OPτ xð Þ−OPτ0ð Þ·op− WIτ xð Þ−WIτ0ð Þ·wic−PIτ xð Þ·pc

ð4Þ

where: Fτ(x) = cash flow; OPτ, WIτ, PIτ = oil production, water
injection, and polymer injection in time interval τ; d = discount rate.

The optimization problem can be formulated as:

MaximizeOF xð Þ
subjectto : x2i−1 + x2i≤cp; i = 1…niw

x≥0
ð5Þ

where: OF(x)=objective function in use, RI(x) or NPVRI(x); and cp=
concession period. Well constraints such as maximum/minimum
bottom hole pressure BHP and maximum/minimum fluid rates are
handled by the reservoir simulator and become hidden constraints for
the optimizer. This may result in objective functions that are not
continuously differentiable with respect to design variables. This
should not be necessarily a problem for the proposed optimization
solver since it is not gradient-based, and uses smooth surrogate data
fitting models.

4. Optimization strategy

As mentioned above the optimization strategy adopted in this
study is based on the efficient global optimization algorithm, EGO
(Jones et al., 1998), modified by a proposed parallel infill sampling
criterion. The strategy is described in the following sections starting
out by the construction of the DACE metamodels followed by the
original EGO infill sampling criterion. The EGO algorithm is then
briefly described and finally the proposed parallel infill sampling
criterion motivation and implementation are presented.

4.1. DACE metamodels

Metamodels construction typically involves one of the following
strategies: datafitting schemes (Giunta andWatson, 1998; Simpson et al.,
2001; Keane and Nair, 2005), Taylor series expansions (Giunta and
Watson, 1998; Giunta and Eldred, 2000), and reduced basis (Afonso and
Patera, 2003). Data fit type surrogates typically involve interpolation or
regression (polynomial) of a set of data generated from the high-fidelity
model. The regression models present two major drawbacks for a meta-
model construction: (1) the difficulty to specify the regression terms as
the functional form of the high-fidelity function is unknown a priori;
(2) the assumptionof independent errors (donot consider the correlation
between the points).

Interpolation models commonly used as surrogates are based on
techniques known as Kriging, a well-known stochastic based process
model in the field of statistics and geostatistics, which started by the late
eighties to be used as approximation technique of outputs obtained from
deterministic computer simulations. Kriging models (Jones et al., 1998;
Simpson et al., 2001; Gano and Renaud, 2004) differ from regression
models in the sense that they in general give a global approximation to
the response and also can capture oscillatory response trends.Moreover,
the sample values are assumed to exhibit spatial correlation with
response values modeled via a Gaussian process around each sample
location. After the unknowns are estimated somevalidation checks need
to be conducted to judge thequality of thegenerated substitutemodel to
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beused. Thisworkwill focus onKriging type of approximation. Themain
aspects of this methodology are described next.

4.1.1. Design of experiments (DOE)
Thefirst step on the constructionof a datafittingbasedmetamodel is

to generate the sampling points. These are unique locations in the
design space determined by a design of experiments (DOE) approach
(Giunta andWatson, 1998; Keane and Nair, 2005). In such locations the
response values of the high-fidelity model are obtained to construct the
approximated model (by instance, Kriging interpolation is very much
influenced by the sampling location). The samplings selection is a very
important stage to build a reliable metamodel. Specifically for high
computational cost function evaluations one must seek for an effective
sampling plan, which means the minimum number of points that
ensure a metamodel with good accuracy.

Commonly considered approaches are Monte Carlo, Quasi Monte
Carlo, Latin hypercube sampling (LHS), orthogonal array, centroidal
voronoi tessellation (CVT) (Giunta and Watson, 1998; Keane and Nair,
2005). In this work LHS sampling will be used throughout. To obtain a
LHS sampling, the range of each variable is divided into p “bins” (sub-
intervals) of equal probability. For n design variables this partitioning
yields a total of pn subintervals in the parameter space. Next, p samples
are randomly selected in the design domain space under certain
restrictions such as: each sample is randomly placed inside a domain
partition and for each unidimensional projection (xi) of the samples and
partitions, there will be one and only one sample in each partition
(Giunta et al., 2003). The above explanation is easily perceived in Fig. 1
in which four samples are to be placed in a 2D (x1, x2) domain. For this
particular case p=4, consequently four partitions are placed in both x1
and x2 axes. This gives a total of 16 bins of which four will be chosen
satisfying both restrictions. Bullets in Fig. 1 represent the four sample
sites chosen randomly in each bin.

The randomness inherent in the proceduremeans that there ismore
than one possibility of arrangement of sampling that meet the LHS
criteria. As the LHS sampling is stochastic in nature, it is advised to run
such scheme several times and select the best sampling for usage. This
can be automatically calculated following the suggestion given byKeane
and Nair (2005) in which for each LHS a quantity Δ is obtained as:

Δ = ∑
m−1

i=1
∑
m

j= i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj−xi

� �2
+ yj−yi

� �2
r

0
BB@

1
CCA ð6Þ

where m is the total number of samplings. According to Keane and
Nair (2005), the LHS distribution that gives the minimum value for Δ
is the selected sample.

4.1.2. Kriging formulation
In this technique the following model is considered to the true

unknown function

f xð Þ = ∑
k

j=1
βjNj xð Þ + ε xð Þ: ð7Þ

In the above equation the first part is a linear regression of the data
with k regressors, inwhichβj ( j=1…k) are the unknowns and ε(x), the
error, is responsible to create a ‘localized’ deviation from the global
model. As previously mentioned, polynomials are generally used to
construct Nj(x). A traditional approach is called ordinary Kriging in
which zero order (constant) function is employed.

In the Kriging process a correlation between errors related to the
distance between the corresponding points is assumed. Different forms
of correlation functionsmay be employed (Giunta and Eldred, 2000). In
this work the following Gaussian correlation form is assumed

Corr x
ið Þ
;x

jð Þ� �
= exp −d x

ið Þ
;x

jð Þ� �h i
ð8Þ

in which d(x(i), x( j)) is a special normalized distance given by:

d x
ið Þ
;x

jð Þ� �
= ∑

n

k=1
θkjx jð Þ

k −xðiÞk jpk θk≥0; pk∈ 1;2½ �ð Þ: ð9Þ

Where n is the total number of variables, θk are the unknown
correlation parameters used to fit the model which measures the
importance or activity of xk and pk relates the smoothness of function in
terms of variable xk (Jones et al., 1998). In thiswork pk=2 is considered.
As already pointed out, this correlation form is so powerful that a simple
constant term for the regression part of Eq. (7) (ordinaryKriging) can be
used in substitution of the model previously presented such as

f x
ið Þ� �

= μ + ε x
ið Þ� �

i = 1; ::: mð Þ ð10Þ

where µ is themeanof the stochastic process and ε(x(i))is Normal(0,σ 2).

Fig. 1. Latin hypercube four samples example in a 2D (x1, x2) domain. Fig. 2. Initial DACE model.
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In the Kriging model a total of k+2 unknowns (μ , σ2,θ1…θk) have
to be obtained to compose the approximation. Such parameters are
estimated by maximizing the likelihood function, lf, given by

lf =
1

2πð Þn=2 σ2� �n=2jRj1=2 exp − f−lμð Þ′R−1
f−lμð Þ

2σ2

" #
ð11Þ

in which f=( f (1),…, f (m))T is the true function at the samplings; l=
(1, …, 1)T and R is a m×m correlation matrix with unity values along
the diagonal whose (i, j)entry is Corr[ε(x(i)), ε(x( j))] between any two
of the m sampled data points x(i) and x( j).

The maximization of the lf function (Eq. (11)) leads to (Jones et al.,
1998):

μ̂ =
l
0
R

−1
f

l
0
R−1l

and σ̂ 2 =
f−l μ̂ð Þ′ R−1

f−l μ̂
� �

m
: ð12Þ

Under the application of the above estimates into Eq. (11) and the
maximization of lf function the remaining unknowns are obtained
(correlation parameters θ). After that the best linear unbiased
predictor (BLUP) at any point of the design domain can be obtained as

f̂ xð Þ = μ̂ + rTR−1
f−l μ̂

� � ð13Þ

in which r(x) is a correlation vector, which correlates an untried x and
m sampled data points. Kriging formulation also allows obtaining the
mean squared error of the predictor at any untried point as follows
(Jones et al., 1998):

s2 x*ð Þ = σ2 1−rTR−1r +
l−l

T
R

−1r
� �2

lTR−1l

2
64

3
75: ð14Þ

It will be convenient to work hereafter with the square root of the
mean squared error, s =

ffiffiffiffiffiffiffiffiffiffiffi
s2 xð Þ

p
, denoted by RMSE.

In order to assess the adequacy of the Kriging model we use the
PRESS (prediction residual error sum of squares) error measure also
referred to as “leave one point out” cross validation method (Keane
and Nair, 2005). It assesses the accuracy of the model when individual
data points are omitted from the data used to create the approxima-
tion:

PRESS = ∑
m

i=1
fi− f̂ i

� �2 ð15Þ

where f ̂i is the ith function approximationmodel obtained by omitting
the ith data point from the data set.

4.2. Infill sampling criterion

The second stage of the metamodel based approach used in this
study searches at each iteration for promising design points to enter
the training sample set. The simplest approachwould be to choose the
minimizer of the predictor itself. This strategy would put too much
emphasis on the local behavior of the objective function which would
force convergence to the local minimum closest to the predictor
minimizer. This can be easily demonstrated in the example shown in
Fig. 2 where the exact, true, function is depicted in a dashed line while

Fig. 4. Functions after addition of first local maximum.

Fig. 3. Expected improvement function.

Fig. 5. Functions after addition of first promising point to temporary sample.
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the Kriging approximation based on five samples is plotted with a
continuous line. There is a larger concentration of samples on the left
which can easily happen in the case of larger number of variables,
especially when some new designs are added to the sample. Also
plotted on the bottom of the figure is the value of the RMSE. The
standard error is zero at the sampled points and larger in the poorly
sampled right half of the plot. If one chooses the predictor minimizer
to enter the sample it is clear that the process will eventually converge
to the local minimum on the left, missing the global minimum of the
objective function.

The example shows that one should not concentrate only on
improving the value of the objective function but also on improving
the accuracy of the predictor. In the latter case designs with large
prediction uncertainty should also be included in the training sample.
In order to have a balanced approach one should also search for points
where the probability of improvement is higher (Jones et al., 1998).
Let fmin be the current best value of the objective function:

fmin = Min f x1ð Þ; f x2ð Þ; …; f xmð Þf g: ð16Þ

The improvement, I(x), over fmin at x is defined by:

I xð Þ = Max fmin− f̂ xð Þ; 0
n o

: ð17Þ

If one assumes that f (̂x) is a realization of a Gaussian process there
is some probability of its improvement upon fmin. If one weights the
improvement by the associated probability one gets the “expected
improvement” function:

EI xð Þ = E I xð Þ½ � ð18Þ

which is the expected value of the improvement at x. It can be shown
that (Jones et al., 1998):

EI xð Þ = fmin− f̂ xð Þ
h i

Φ
fmin− f̂ xð Þ

s

" #
+ sφ

fmin− f̂ xð Þ
s

" #
ð19Þ

where: Φ=standard normal cumulative distribution function;
φ=standard normal density function and s is defined in Section 4.1.2.

The first term is the predicted difference between current
minimum and f ̂(x) weighted by the probability of improvement
(Schonlau, 1997). Hence it is large where f ̂(x) is likely to be smaller
than fmin. The second term is large when f ̂(x) is close to fmin and s is
large denoting much uncertainty with the prediction. Therefore the
expected improvement function strikes a balance between exploiting
regions of the design spacewhere good solutions have been found and

exploring regions that are undersampled thus having greater
uncertainty (Bichon et al., 2007).

A plot of the expected improvement function is shown on the
bottom of Fig. 3. It can be seen that it has two local maxima: one in the
region of expected function decrease and another in the poorly sampled
area.

The optimization of the expected improvement will add to the
sample a point very close to the local minimum of the true objective

Fig. 6. Example oil field (permeabilities in mD).

Fig. 7. Capillary pressure and relative permeability curves.
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function. But once this new point enters the training sample set the
resulting expected improvement function attains a maximum close to
the global minimum, as can be seen from Fig. 4. Now it can be readily
perceived that the addition of this new design to the sample will
ensure final convergence to the true global minimum.

As it can be observed from Figs. 3, and 4 the expected improvement
function vanishes at sampled points and tend to be highly multimodal
(Jones et al., 1998). The local maxima of the expected improvement
function are at designswith the highest probability of function decrease
or predictor uncertainty. Therefore those designs are promising points
to enter the sample in order to better update the metamodel (Sobester
et al., 2005).

4.3. The EGO algorithm

The algorithm proposed by Jones et al. (1998) is schematically
described below:

(1) Generate a small number of samples from the objective function:

a) An initial sample of m=10n, where m = initial sample size
and n = number of variables (Jones et al., 1998) has been
suggested. Others propose m=(n+1)(n+2)/2, the num-
ber of points necessary to fit a full quadratic polynomial
(Bichon et al., 2007).

b) Latin hypercube or other sampling technique is used to
generate the initial sample (Giunta et al., 2003).

(2) Construct an ordinary Kriging based metamodel from initial
sample:

a) Other technique such as radial basis functions may also be
used (Sobester et al., 2005).

b) Themetamodel is crossvalidated by leaving one observation
at a time out and then predicting it based on the remaining
sample points. If crossvalidation fails a log or inverse
transformation is tried.

(3) Find the design that maximizes the expected improvement
function.

(4) If maximum improvement is less than TOL⁎ fmin, stop. The
suggested value for TOL is 1% but this value may have to be
reviewed if log or inverse transformationwas applied (Jones et al.,
1998).

(5) Add newdesign to sample and updatemetamodel. Go to step [3].

As the computation cost of reservoir simulation is high and the
availability of parallel computation has increased dramatically in the oil
industry setting it is highly desirable to include multiple designs in the
ISC. In fact, as has been suggested earlier, local maxima of the expected
improvement function are generally promising points whose addition
to the sample may increase efficiency of the algorithm.

4.4. Parallel infill sampling criterion

We propose below a parallel infill sampling criterion. It is motivated
by the following observations:

(1) Local maxima of the expected improvement function are
designs where either there is a high probability of objective
function decrease or high predictor uncertainty. These are
promising designs to improve the objective function as well as
metamodel predictive capability.

(2) As one includes a local maximum of the expected improvement
in the sample the value of the updated expected improvement
drastically reduces in the neighborhood of the point and another
local maximum becomes dominant as observed in Fig. 4.

Let np be the number of available processors and nd≤np be the
number of promising designs to enter the sample. The proposed
change to step [3] of EGO algorithm is given below.

Copy current sample set to temporary working sample set.
For i=1…nd

Maximize the expected improvement function, obtaining xi
*.

Append the pair x*i ; f̂ x*i
� �� �

to temporary working sample.
Temporarily update Kriging metamodel.

Next i.

The following remarks further detail the proposed implementation:

(1) DIRECT algorithm (Finkel, 2003) is used to optimize the
expected improvement function. It is a derivative-free global
optimizer that reaches a solution by selecting and subdividing
at each iteration hyper-cubes that aremost likely to contain the
global optimum.

Table 1
Reservoir characteristics.

Property i j k

Size of cells (ft) 350 350 20, 30, 50
Permeabilities (1st layer) (mD) 500 500 200
Permeabilities (2nd layer) (mD) 50 50 200
Permeabilities (3rd layer) (mD) 200 200 19.2
Porosity 0.30
Reference level for pressure (ft) 4150
Rock compressibility (1/psi) 3.0×10−6

Reservoir pressure (psi) 3000.0
Bubble point pressure (psi) 2500.0

Table 2
Oil and water properties.

Property Oil Water

Density (lbm/ft3) 46.244 62.238
Compressibility (1/psia) 1.3687×10−5 3.04×10−6

Formation volume factor (RB/STB) 1.50 1.04
Viscosity (cp) 1.04 0.31

Fig. 8. Polymer adsorption isotherm for a rock with permeability of 10 mD.

Table 3
Permeability related polymer constants.

Permeability
(mD)

AdMAX

(lb/bbl)
IPV RRF

10.0 0.30 0.05 1.20
1000.0 0.20 0 1.20
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(2) Observe that the true function is never invoked to compute
functional values at new sample points. The cheap metamodel
is always used instead.

(3) As Kriging predictor is used to compute f ̂(xi*) there is no need to
recompute maximum likelihood parameters for metamodel
updating.

(4) In Fig. 5 the maximizer of the expected improvement function
evaluated using the Kriging predictor is added to temporary
working sample and the metamodel is updated. Note that the
added point lies on the continuous line representing the
approximatingmetamodel. Note also that the resulting function
filters out the added solution so that the global optimizer may
find the next local maximum.

(5) CorrelationmatrixR becomes ill-conditionedwhen samples get
clustered around a givendesign. This happens because rows and
columns ofR becomealmost identical (Sasena, 2002). Therefore
we use the following safeguard when adding a point to the

sample: if minimum distance of new point to the existing
sample is less than tol, then perturb the new point in a random
direction so that its distance from the nearest point found varies
randomly from one to ten times tol. The value used for tol is:

tol = 103 ffiffiffiffiffiffi
εM

p ð20Þ
where: εM = machine epsilon.

(6) In step [5] of the EGO algorithm we add the n additional design
points to the sample where true functions are concurrently
evaluated to update the metamodel for next iteration.

5. Example application

Consider the field shown in Fig. 6, containing four injectors and
nine producer wells, with property data based on IMEX template
MXSPR005 (CMG, 2007) and geometry similar to Zerpa et al. (2005),

Fig. 9. Starting injection time and slug duration.

Fig. 10. Evolution of polymer concentration.
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modeled with 1083 cells. Polymer is injected at a constant
concentration of 0.7 lb/STB while the maximum water injection rate
is 10,000 STB/day at a maximum BHP of 9000 psi during the whole
simulation period of ten years. Producers operate at amaximum fluids
rate of 2500 STB/day and minimum BHP of 1500 psi.

In all studied cases the reservoir is initially under-saturated (pressure
above the bubble point) with an initial oil saturation So=0.8 (Sw=0.2).
The adopted capillary curve and relative permeabilities are shown in
Fig. 7.

Tables 1 and 2 detail the rock and fluids parameters adopted in the
simulations. The adsorption of polymer by the rock as a function of
polymer concentration in water is shown in Fig. 8 as a non-linear
adsorption isotherm for a rock with permeability of 10 mD. For
different rock permeabilities linear interpolation of rock/polymer
parameters from Table 3 may be used.

We initially consider three cases: base, non optimal and optimal. In
the base case only water is injected. Polymer is injected for the first
three years at each injector for the non optimal case.

The optimization problem formulated as described above has eight
variables. The RI function is computed using op=US$70/STB, wic=US
$0.29/STB and pc=US$15.15/STB. The starting time and slug duration
for the non optimal and the obtained solution are shown in Fig. 9. The
distribution of injected polymer in reservoir at different times is shown
in Fig. 10 for the optimal solution. The different injection starting times
for the injectors and the fast spreadingof polymer in the reservoir canbe
recognized. Seven additional samples were used in the proposed
parallel infill sampling criterion. The algorithm converged in 21
iterations, requiring 248 simulation runs, with an optimal RI value of
US$115.2×106, corresponding to an increase of 2.76 MMSTB in oil

production and a decrease in water production of 2.95 MMSTB, relative
to the non optimal case. Using the original EGO algorithm, without
additional samples, thenumber of iterations increasesbya factor of2.33,
doubling the required clock time to obtain the solution. The non optimal
case results in RI=US$26.3×106, which is 23% of the optimal value.

In order to assess the sensitivity of the optimal polymer injection
solution relative to oil price, A parametric study for nine oil prices from
op=US$20/STB to US$100/STB was conducted. Relative improvement
and total mass of injected polymer variations with oil price are shown in
Fig. 11. The sharp increase of both values with increase in oil prices is
readily appreciated. Some insight canbe gained fromFig. 12,which shows
the variations of oil and water cumulative productions as functions of oil
price. It is clear that polymer injection method becomes increasingly
feasible with higher oil prices. This is corroborated by the increase in size
of the polymer slugs with oil price as depicted in Fig. 13 for the cases of
op=US$40/STB, US$70/STB and US$100/STB. It is also worth noting that
optimal injection strategies starts out injecting water only, followed by
polymer injection after the second year of exploitation. Also, polymer
injection concentrates at the first years of the concession period rather
than at the end.When objective function RI(x) of Eq. (3) is exchanged for
NPVRI(x) of Eq. (4), with a mean annual rate d=9.3%, optimum results
change slightly with an average reduction of 0.3% in the final cumulative
oil production, and 14.7% in the total mass of injected polymer.

6. Conclusions

In reservoir engineering problems, each functional evaluation
requires a complete model simulation which is computationally
expensive. Some of these problems are also multimodal with several

Fig. 11. Relative improvement and mass of injected polymer as functions of oil price.

Fig. 12. Oil and water cumulative productions as functions of oil price.
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local minima. A common approach to tackle these problems is to
construct cheap global approximation models of the responses, often
called metamodels or surrogates.

In this study a two-stage approach is employedbased on the efficient
global optimization algorithm, EGO, due to Jones. First an initial sample
of designs is obtained using a design of experiments technique. Parallel
simulation runs for the initial sample are used to construct a Kriging
metamodel. In the second stage the metamodel is used to guide the
search for promising designs which are added to the sample in order to
update the model until a suitable termination criterion is fulfilled. The
selection of designs which are adaptively added to the sample should
balance the need for improving the value of the objective function with
that of improving the quality of the prediction so that one does not get
trapped in a local minimum. In the EGO algorithm this balance is
achieved through the use of the expected improvement merit function.

The original EGO algorithm is modified to exploit parallelism by
selecting some local minima of the merit function to enter the sample
at each iteration. The modified algorithm is applied successfully to a
polymer injection optimization problem. The advantages of adopting
the proposed parallel infill sampling criterion are noticeable: the total
number of iterations is decreased, often the additional samples turned
out to be the best design thereby improving the quality of the
surrogate, and the quality of final solution is also improved. Since
evaluation of the additional sampling points is done concurrently, the
total CPU time to solve the problem is significantly decreased.

As demonstrated by the simple case study analyzed herein,
scheduling of polymer injection is in general non trivial and application
of optimization techniques is advisable. Itwas observed that the optimal
solution started out injecting water on the first two years and after that
polymer injection began. For this example it can be concluded that
polymer should start at the first years of the concession period rather
than at the end. It was also observed that optimal solution is sensitive to
oil price,with themethodbecoming increasingly feasiblewithhigher oil
prices.

Nomenclature
Acronyms
BHP bottom hole pressure
BLUP best linear unbiased predictor
DACE Design and Analysis of Computer Experiments
DOE design of experiments
EGO efficient global optimization
EOR enhanced oil recovery
ISC infill sampling criterion

IPV inaccessible pore volume constant
PRESS prediction residual error sum of square
RMSE root mean squared error
RRF residual resistance factor

Symbols
Admax maximum adsorptive capacity of the rock
CWI cumulative water injection
COP cumulative oil production
Corr correlation term
Cp concession period
CPI cumulative polymer injection
d(x(i), x( j)) normalized distance
EI(x) expected improvement function
f true function
f ̂ approximate function
f true functions at samples
I(x) the improvement function
lf likelihood function
m total number of samples in a DOE scheme
niw number of injector wells
n total number of design variables
nd number of promising design for the parallel ISC scheme
np number of computer processors
Nj regressors
NPVRI alternative objective function
OF objective function
op oil price
pc polymer cost
R regression matrix
RI relative improvement of injection schedule (objective

function)
So initial oil saturation
S2 mean squared error of the predictor
TOL, tol prescribed tolerances
wic water injection cost
x design variables

Greek symbols
βj, θj Kriging unknown parameters
ε error in the Kriging model
εM machine epsilon
φ standard normal density function
ϕ reservoir rock porosity
ϕ̄ polymer affected porosity

Fig. 13. Initial injection time and slug duration for different oil prices.
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Φ standard normal cumulative distribution function
µ mean of the stochastic process
σ standard deviation
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