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Deformable Porous Media

 Stresses

 Continuum mechanics deals with deformable bodies.

 The stresses considered in continuum mechanics are only those produced by deformation
of the body.

 Stress is a measure of the average force per unit area of a surface within a deformable
body on which internal forces act.

 It is a measure of the intensity of the internal forces acting between particles of a
deformable body across imaginary internal surfaces.

 These internal forces are produced between the particles in the body as a reaction to
external forces applied on the body.

In general, stress is not uniformly distributed over the cross-section of a material body,
and consequently the stress at a point in a given region is different from the average stress
over the entire area.

Therefore, it is necessary to define the stress not over a given area but at a specific point
in the body.



Normal and Shear Stresses:

Definition:

Decomposition of stress vector:

Normal stress:

Shear stress:

stress vector
(acting in a infinitesimal surface)

Deformable Porous Media



In 3 dimensions :

Defined for each point 
for a body in equilibrium, 
subjected to external load

Stress Representation



Mohr Circle:

3D representation of Mohr Circle:

Stress Representation



 Cauchy Stresses

 According to Cauchy, the stress at any point in an object assumed to behave as a
continuum is completely defined by the nine components of a second-order tensor of type
known as the Cauchy stress tensor.
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 The Cauchy stress tensor is used for stress analysis of material bodies experiencing small
deformations.

For large deformations, also called finite deformations, other measures of stress, such as the
first and second Piola-Kirchhoff stress tensors, the Biot stress tensor, and the Kirchhoff stress
tensor, are required

e.g. xy acts on the x face in the y direction,

Deformable Porous Media



Deformable Porous Media

In Soil/Rock Mechanics compression is
considered as positive and tension as negative. 

+ –

Compressive stresses 
are positives

Tensile stresses 
are negatives

 Stress Sign Convention



Stress, stress changes in space and time

In 3 dimensions :
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Among the infinite number of triplets of
planes which satisfy the fundamental
stress Theorem, there is always one set
(=abc) on which no shear stress is present.

full tensor                                                                                   diagonal tensor

Principal stresses:



Stress, stress changes in space and time

 At every point in a stressed body there are at least three planes, called principal planes, 
with normal vectors , called principal directions, where the corresponding stress vector is 
perpendicular to the plane and where there are no normal shear stresses. 

The three stresses normal to these principal planes are called principal stresses

 The Cauchy stress tensor obeys the tensor transformation law under a change in the
system of coordinates.

A graphical representation of this transformation law is the Mohr's circle for stress

 Principal Stresses

1

2

3

0 0
0 0
0 0






 
   
  

σ1 2 3     Principal stresses



Stress state in lab experiments:
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Stress Representation



TRIAXIAL TEST

Mohr-Coulomb criteria for shear strength (minimum 3 samples):

1

F1

a (axial strain)0

F2

F3

1

2 3 s3 = 100 kPa

s3 = 200 kPa

s3 = 300 kPa

3  1 

t (shear stress)

s (normal stress) 
c

f

- 



TRIAXIAL TEST

Test s’3
(kPa)

(s’1- s’3) 
(kPa)

s’1        
(kPa)

1/2(s’1 - s’3) 
(kPa)

1/2(s’1 + s’3)   
(kPa)

1 50 200 250 100 150

2 140 335 475 168 308

3 300 520 760 260 500

c’



Principal stresses and principal planes of stress:
Very useful because 
i) the position of principal surfaces of stress can often be identified
ii) the orientation of structures (faults etc) depends on the position 

of  the principal stresses

Where are surfaces of principal stresses? 

arch
effect

tension due
to water load

Stress Fields



In 2D analysis: stress field and displacement field:

Finite element analysis of a tunnel excavation:

Mesh Stress field Displacement field

Stress Fields



Stresses are related to Strains

 Example of elasto-plastic behaviour: tensile test (1D) in metals

YieldingF
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Elastic 
behavior

 Axial behavior



Stresses are related to Strains

 3D behavior

εDσ '

CAP Model: Elastoplastic multi-mechanism model

stress-strain relationship 

D: constitutive tensor Elasticity
Visco-Elasticity
Plasticity
Visco-Plasticity
Damage



Strains are related to Displacements
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 Strain Tensor 

 Tuuε 
2
1

Cauchy’s infinitesimal strain tensor:

Compatibility conditions:



Strains

extension/contraction:                               distortion:



Strains are related to Displacements
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 Compression +
 Small deformations :

 Strain Tensor 

 Tuuε 
2
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or:

Displacement vector 
u = (u,v,w)T

Component x: u
Component y: v
Component z: w

+
+

+

+

Symmetric part of the
displacement gradient tensor



Strains are related to Displacements
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 Compression +
 Small deformations :

 Strain Tensor 

 Tuuε 
2
1

Displacement vector 
u = (u,v,w)T

Component x: u
Component y: v
Component z: w

or:

zyxv V
V   u
0

zyxv V
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0

Stress Sign Convention: 

if positive for compression

volumetric strain:

Note:  Tuuε 
2
1

Symmetric part of the
displacement gradient tensor

Divergence of the  
displacement vector



Equilibrium Equation 

 Consider a volume of a porous medium.

 If inertial terms are neglected, the distribution of total stress within this
volume can be shown to satisfy the equilibrium equation.


  


ij

i
j

F 0 i 1, 2, 3
x

or

Where the sij (or s) is the total stress on the medium and Fi (or b) is the
body force per unit volume of the medium.

The nine stress components are shown in figure above.

MOMENTUM BALANCE (EQUILIBRIUM)

wikipedia0 bσ



Equilibrium Equation 

 Consider a volume of a porous medium.

 If inertial terms are neglected, the distribution of total stress within this
volume can be shown to satisfy the equilibrium equation.
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Where the sij (or s) is the total stress on the medium and Fi (or b) is the
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Equilibrium Equation 

 Consider a volume of a porous medium.

 If inertial terms are neglected, the distribution of total stress within this
volume can be shown to satisfy the equilibrium equation.
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Where the sij (or s) is the total stress on the medium and Fi (or b) is the
body force per unit volume of the medium.

The nine stress components are shown in figure above.
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Equilibrium Equation 

 Consider a volume of a porous medium.

 If inertial terms are neglected, the distribution of total stress within this
volume can be shown to satisfy the equilibrium equation.

Where the sij (or s) is the total stress on the medium and Fi (or b) is the
body force per unit volume of the medium.

The nine stress components are shown in figure above.
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Effective Stress Principle

 Terzaghi (1936) proposed the principle of effective stress(*), the most
important equation in soils mechanics.

 The effective stress (s’) is the component of the normal stress taken
by the soil skeleton.

 It is the effective stress which controls the volume and the strength of
the soil.

 

Karl Terzaghi
(1883 - 1963)

wus  s 

 Effective Stress

pore water pressuretotal stressefective stress

(*)“All the measurable effects of a change of stress, such as compression, distortion and a change in the
shearing resistance are exclusively due to changes in effective stress…every investigation of the stability
of a saturated body of earth requires the knowledge of both the total and the neutral stresses.”
(Terzaghi, 1936)

 It is assumed saturated soil, water incompressibility and rigid soil particles. 

 Pore Water Pressure, Total & Effective Stresses



Effective Stress Principle

Normal Stress in the Stress Tensor:

s  s  wp

 Multiphase material (solid and liquid)

 Incorporation of an additional variable: pore pressure 

 Coupled phenomena (mechanical & hydraulic)



Effective Stress Principle

The concept of effective stress is based on the pioneering work in 
soil mechanics by Terzaghi (1923) who noted that the behavior of a 
soil (or a saturated rock) will be controlled by the effective stresses, 
the differences between total stresses and pore pressure. The so-
called “simple” or Terzaghi definition of effective stress is:

Iσσ  fp'

Effective
Stress
Tensor

Total 
Stress
Tensor

Fluid
Pressure

Identity
Tensor



Effective Stress Principle

= +

Saturated  soil Solid Skeleton Water

A saturated porous medium comprises two
phases:

The strengths of these two phases are very different:
 the soil skeleton can resist shears. Two basic mechanisms:

• inter particle friction

• particles interlocking

 the shear strength of water is zero
• water can only sustains isotropic pressure.

• the soil particles

• the pore water



Effective Stress Principle

Physical Interpretation

wp

σ

σ

σ : total stresses externally applied

σ : stresses that act through the contacts 
between particles (Am)

pw : water pressure (Aw )

At : total area 

At = Am + Aw

At



Effective Stress Principle

fpσσ 'In terms of normal components:

It is relatively straightforward to see that the stresses 
acting on individual grains result from the difference 
between the externally applied normal stresses and the 
internal fluid pressure. If one considers the force acting 
at a single grain contact, for example, all of the force 
acting on the grain is transmitted to the grain contact. 
Thus, the force balance is

(Zoback, M. D., 2007)

fcTccT pAAAσAσ )( 

fc paaσσ )1( 

'lim
0

σaσ ca




'σ

ff pσpaσσ  )1('

Iσσ  fp'

, for very small contact areas.



Effective Stress Principle

σ        Total Stress

pw

Water pressure

Soils as one phase 
material

The strength of the soil skeleton and the pore water are so
different, therefore it is necessary to consider the stress
acting in each phase separately



Effective Stress Principle

 Based on experimental information it can be concluded that Terzaghi’s
definition of effective stresses works well for a number of soils, but for
other cases it needs an upgrade.

 A more general law for effective stresses can be expressed as:

 wps  s It is and extension of the one proposed by Terzaghi

where a is a physical constant known as Biot parameter.

 Geertsma (1957) and Skempton (1960) suggested:

s

K
K

1
 

    
 where:

K: is the drained bulk modulus of the dry aggregate or rock

(i.e. porous medium skeleton).

Ks: is the bulk modulus of the soil’s/rock’s individual solid grains

Iσσ  fp'



Effective Stress Principle

 Based on experimental information it can be concluded that Terzaghi’s
definition of effective stresses works well for a number of soils, but for
other cases it needs an upgrade.

 A more general law for effective stresses can be expressed as:

Iσσ  fp'

sKK /1 Biot’s constant

Solid phase (rock grains) bulk modulusBulk modulus of the overall skeleton

For rocks, it is important to take into account the Biot’s constant. 
For soils, it is equal to one.
For unconsolidated or weak rocks, it is close to one.  

1
1~

1



Effective Stress Principle

 It is clear that:

 For solid rock (i.e. practically no interconnect pores):

Therefore the pore pressure has no influence on porous media behavior.

0 1  

 sK K

0
lim 0
f
  '

ij ijs  s

 For a highly porous soil (e.g. soil with an open structure): sK K

1
lim 1
f
  's  s  ij ij ijp

Therefore the pore pressure has the maximum influence and the Terzaghi
principle of effective stress is recovered.

sKK /1



Effective Stress Principle

 Measured values of  (Biot’s parameter) for two porous materials:
Biot’s Effective Stresses '

ij ij ijps  s   

 Uncemented Sand

 Sandstone

 In both cases  decrease
with confining pressure

Zoback (2009)



Effective Stress Principle

Biot’s Effective Stresses (Lade & De Boer, 1997)

0 1  1 � 0 �

Soil                                                                Rock 
Porosity

Strength



Derivation of Biot’s Constant
(Lewis and Schrefler, 1998)

Elasticity (solids):

Poro-elasticity  for soils: 
(incompressible grains)

For rocks, we have to consider that the pore pressure  pf induces hydrostatic
stress distribution in the solid phase (compressible). The ensuing deformation
is a purely volumetric strain: 

or in tensorial form

The effective stress causes all relevant deformations of the solid skeleton. 
The constitutive relationship should be rewritten as

εDσ dd 
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Derivation of Biot’s Constant
(Lewis and Schrefler, 1998)

So, considering the deformations of the solid skeleton as new deformational
mechanism: 

On the other hand, using Terzaghi’s definition of effective stress:
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Derivation of Biot’s Constant
(Lewis and Schrefler, 1998)

Biot´s effective stress:

This is the stress which directly induces rock deformation:
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Stress Path

1

2

3

Stress path

 It is generally complicate to 
draw the stress path in 3D

 We tend to work with 
invariant if stresses rather 
with the full stress tensor

 We use a lot trixial conditions, 
in which σ2=σ3

 Under this condition we can 
work in 2D, with σ1 & σ3 only 

 This is what we generally do 
with the Mohr circle.

A(σ1,σ2,σ3)ini

B(σ1,σ2,σ3)end

 Stress path in 3D



Stress Invariants

 The components of the stress tensor
depend on the orientation of the
coordinate system at the point under
consideration.

There are certain invariants associated with every tensor which are also independent of the
coordinate system.

 A vector is a simple tensor of rank one. The value of the components will depend on the
coordinate system chosen to represent the vector, but the length of the vector is a physical
quantity (a scalar) and is independent of the coordinate system chosen to represent the
vector.

Similarly, every second rank tensor (such as the stress and the strain tensors) has three
independent invariant quantities associated with it.

One set of such invariants are the principal stresses of the stress tensor.

However, the stress tensor itself is a
physical quantity and as such, it is
independent of the coordinate system
chosen to represent it.



Stress Invariants

321
222

3

323121

2222
2

3211

2det

)(

)()(
2
1

















xyzxzyyzxyzxzxyzyx

yzxzxyzyzxyxkkijij

zyxkk

I

I

I

σ

Invariants of the Stress Tensor (σ)

xy xz

yx

x

yz

zx zy

y

z

 
 
 




 
   
  

σ



Stress Invariants

 The stress tensor  can be expressed as the sum of two other stress tensors:
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 Stress Deviator Tensor

 A mean hydrostatic stress tensor or volumetric stress tensor or mean normal stress tensor, 
which tends to change the volume of the stressed body;

 A deviatoric component called the stress deviator tensor, S, which tends to distort it.



Stress Invariants
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 Invariants of the stress deviator tensor

= 0 because , the stress deviator tensor is in a state of pure shear



Stress Invariants

Some stress invariants:

Effective mean stress (volumetric behavior):

Deviatoric tensor (shear behavior):

Deviatoric (shear) stress:

Lode angle:
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Lode angle:
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Lode angle:
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Schematic diagram of a 
triaxial compression apparatus

Stress state in cylindrical specimens 
in compression and extension tests

can be 
varied 

during the 
experiment



Deviatoric plan:

space
diagonal

Stress Invariants

Potts & Zdravkovic (2001)

A

B

J-p’ space
(for a fixed Lode Angle)



J-p’ space:

Stress Invariants

A

B



Stress Invariants

Better than this...

J-p’ space:

Material understands J-p’ space 
but not Cartesian space!

volumetric 
behavior

shear
behavior



Representation of Constitutive Models
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Mohr Coulomb Model in terms of Principal Stresses (2D)
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The relationship between the principal stresses at failure and the shear strength parameters 
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Mohr Coulomb Model in Principal Stress Space (3D) 

 Mohr – Coulomb failure
surface is a irregular
hexagon in the principal
stress space

s’3

s’1

s’2

s’1=s’2= s’3

1 3 1 3( ) ( ) sin 2 cos 0F c                

Representation of Constitutive Models



 Mohr Coulomb Model in Principal Stress Space (3D)
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TRIAXIAL COMPRESION TEST (TCT)

For TCT the Lode Angle: Θ = + 30˚

The plane (p',J) is the one that pass thought  OO'A

Representation of Constitutive Models



 Mohr Coulomb Model in Principal Stress Space (3D)
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The plane (p',q) is the one that pass thought  OO‘F

TRIAXIAL EXTENSION  TEST (TET)

For TET the Lode Angle: Θ = - 30˚

Representation of Constitutive Models
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 Yielding/failure for TCT (OO’A)
corresponds to a stress path with θ=+30˚.

Yielding/failure for TET (OO’F) corresponds
to a stress path with θ=-30˚.

 We may need to predict yielding or failure
for any stress path (i.e. any θ)

 We can use a function g(θ) that generalize
the yield/failure surface to any stress path
(i.e. any θ)
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 Mohr Coulomb Model in Principal Stress Space (3D)

Representation of Constitutive Models



Mechanical Constitutive Behaviour

More about stress-strain relationship...

εDσ '



Linear Elasticity – Isotropic Materials

Compression test:

Young modulus:

(Zoback, M. D., 2007)
(Jandakaew, M. and Chevrom, 2007)

Uniaxial compression
tests in reservoir rocks:



Deformed sample subjected to uniaxial stress:

Poisson ratio:

(Fjaer, E. et al., 2008)

< 0

> 0

Linear Elasticity – Isotropic Materials



(Zoback, M. D., 2007)

Physical interpretation of elastic modulus:
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Linear Elasticity – Isotropic Materials



Relationship between elastic modulus:

Lamé constants:

Uniaxial compaction
modulus:

Bulk modulus:

Linear Elasticity – Isotropic Materials



Homogeneous isotropic material:

Using tensorial notation:

where:                       is the elastic constitutive tensor that relates 
the stress and strain tensors. 

Kronecker delta

or:

εDσ  εDσ dd  (incremental form)

),( ED

Linear Elasticity – Isotropic Materials

or



Anisotropy

If the elastic response of a material is not independent of the material’s orientation for a given
stress configuration, the material is said to be anisotropic. Thus the elastic moduli of an
anisotropic material are different for different directions in the material.

Most rocks are anisotropic to some extent…

The origin of the anisotropy is always heterogeneities on a smaller scale than the volume under
investigation.

Sedimentary rocks are created during a deposition process where the grains normally are not
deposited randomly. Seasonal variations in the fluid flow rates may result in alternating
microlayers of fine and coarser grain size distributions.

Due to its origin, anisotropy of this type is said to be lithological or intrinsic. Another important
type is anisotropy induced by external stresses. The anisotropy is then normally caused by
microcracks, generated by a deviatoric stress and predominantly
oriented normal to the lowest principal stress.

Note (Fjaer et al., 2008): In calculations on rock elasticity, anisotropy is often ignored. This
simplification may be necessary rather than just comfortable, because—as we shall see—an
anisotropic description requires much more information about the material—information that
may not be available. However, by ignoring anisotropy, one may in some cases introduce large
errors that invalidate the calculations.



Anisotropy

For a general anisotropic material, each stress component is linearly related to every strain  
component  by  independent  coefficients:

Since the indices i, j, k and l may each take the values 1,2 or 3, there are all together 81 of the 
constants  Cijkl

Some of these vanish and others are equal by symmetry, however, so that the number of 
independent constants is considerably less:                                                        and

with that, the number of independent constants reduces to 21.



Anisotropy: orthorhombic symmetry

Orthorhombic symmetry: Rocks can normally be described reasonably well by assuming 
that the material has three mutually perpendicular planes of symmetry.

or using vetorial notation of stress and strains:

where: 

These stress–strain relations generally describe most types of rocks.

This model describes the elastic properties of any linear elastic material with or-
thorhombic or higher symmetry. Thus they may also describe an isotropic rock:



Example: consider the uniaxial stress state defining Young’s modulus and Pois-
son’s ratio. In this example, σy = σz = 0 and τxy = τxz = τyz = 0. The stress–strain 
relations become:

the equations above (2,3) for

(1)
(2)
(3)
(4)
(5)
(6)

Anisotropy: orthorhombic symmetry



Anisotropy: transverse isotropy

Transverse isotropy: A special type of symmetry, which is relevant for many types of rocks, 
is full rotational symmetry around one axis. Rocks possessing such symmetry are said to be 
Transversely isotropic. It implies that the elastic properties are equal for all directions within 
a plane, but different in the other directions. This extra element of symmetry reduces the 
number of independent elastic constants to 5.

Transverse isotropy is normally considered to be a representative symmetry for horizon-
tally layered sedimentary rocks. 

Stress induced anisotropy may often be described by transverse isotropy as well. 

Note: linear elasticity

2 constants



Realistic stress-strain relationship

Realistic stress-strain relationships: based on experiments



Before Failure

Very important!! (associated to 
shear FAILURE)



Triaxial testing: typical influence of the confining
pressure on the shape of the differential stress (axial 
stress minus confining pressure) versus axial strain curves

Rock Failure



Realistic stress-strain relationship

Rocks:
It depends on the
confining stress!!



Rocks:
It depends on the
confining stress!!

Schematic representation 
of brittle failure styles in 
triaxial tests (Griggs and 
Handin, 1960a). 

a) Extension test. 

b) – e) Compression test 
with confining pressure 
increasing to the right.



Shear Failure



Rock Volumetric Behavior

(consolidated
geomaterials)

(unconsolidated
geomaterials)

Dilation : 
rock expansion under shear

Soil
Rock

Important
for geological 

fault reactivation



Tensile Failure

Tensile failure occurs when the effective tensile stress across some plane in the sample
exceeds a critical limit. This limit is called the tensile strength ( T0 ) and has the same unit 
as stress. The tensile strength is a characteristic property of the rock. Most sedimentary 
rocks have a rather low tensile strength, typically only a few MPa or less. In fact, it is a 
standard approximation for several applications that the tensile strength is zero.    
(Fjaer et al., 2008)

- Brazilian Test:                                       - Incorporation of tensile strength in failure surface:

TENSION cutoff



Rock Volumetric Behavior

Important for reservoir compaction

Rock compaction : 
Volume deacrease due to compression

Normal 
Consolidation

Line (NCL)
Load/
Unload
Lines

Normal Consolidation Line (NCL):
Change of pore structure
(LIMIT to plastic compaction: 
irreversible behavior)

Load/Unload Line: 
No changes in pore structure
(elastic deformation: 
reversible behavior)

Isotropic
compression of
Bringelly shale



Rock Volumetric Behavior

Irreversibility...



Rock Volumetric Behavior

TENSION cutoff

Rock compaction : 
Volume deacrease due to compression

- Incorporation of elastic-plastic compressive limit in failure surface:

CAP Model



Rock Volumetric Behavior

CAP model: 
Multi-mechanism model



Rock Volumetric Behavior

CAP model: 
Multi-mechanism model

pε
Dilation

p
v

Stress path

In situ (initial) stress

pε
Compression

p
v

pε

Critical point:
no volumetric plastic strain
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Vargas et. all 2006

FAULT REACTIVATION

RESERVOIR COMPACTIONHYDRAULIC
FRACTURING



Coupling Between Deformation and Permeability

Hydrostatic Compression: σ1

σ3=σ1

Stress path         Plastic strain
(only volumetric) 

p

Effect of reservoir compaction:
Decrease of permeability due to
(irreversible) pore colapse.

Interpretation using CAP model

Ex: Kozeny-Carman



Coupling Between Deformation and Permeability

Hydrostatic Compression:

σ1

σ3=σ1

Intrinsic 
anisotropy
(initially)

Applied stress did not induce
further anisotropy



Coupling Between Deformation and Permeability

Permeability variation in a brittle rock in a triaxial compression test. This type 
of stress-strain behavior is widely reported in the literature. 
We have five distinct regions:

I - closure of pre-existing micro-cracks
II - zone of elastic behavior
III - steady growth of cracks 
IV - unstable growth of cracks 
V- post-peak zone characterized by the loss of resistance

(softening followed by rupture) of the material

I

I

II

II

III

IV
V

III

IV

V

Anisotropy on permeability:

Intrinsic
Anisotropy

Stress
Induced

Anisotropy

Triaxial Compression:

σ1

σ3

σ1 >σ3

dilatancy



Fluid Flow in Deformable Porous Media

Volumetric strain:       u x y zd d d
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Fluid Flow in Deformable Porous Media

    1 0      s st


  f    


j

MASS BALANCE OF SOLID

Mass balance of solid present in the medium is written as:

where s is the mass of solid per unit volume of solid and js is the flux of solid.

    
    f    f    

1 1 0us st

     
   f

 f   f     f   f 
 

1 1 1 0u u us
s s s st t

(1)

(2)



Fluid Flow in Deformable Porous Media

MASS BALANCE OF SOLID

(Eulerian description)

A more convenient form of the balance equations is obtained considering the definitions of
material derivate with respect to the solid velocity; which can be expressed generically as:

    1 1 0s st

   f     f  
  

u

     .


  


u
 


D
Dt t

When the description of motion is made in terms of the
spatial coordinates is called the spatial description or
Eulerian description,

That is, the current configuration is taken as the
reference configuration.

 In the Lagrangian description the position and physical properties of the particles are
described in terms of the material or referential coordinates & time.

 The material derivative (or substantial time derivative) can serve as a link between ‘Eulerian’
and ‘Lagrangian’ descriptions of motion

(3)



Fluid Flow in Deformable Porous Media

Definitions:
Spatial point: fix point in the space

 Material point: a particle. 

 The particle can be at different spatial points during its movement in time. 

 Configuration (Ω):  space occupied by the particles (that conform the continuum 
medium) at certain instant ‘t’

t=to is the reference time

Ω0 = initial material or reference 
configuration.

Ωt = current configuration

Material coordinates (X1, X2, X3)

Spatial coordinates (x1, x2, x3)          (current 
configuration). 



Fluid Flow in Deformable Porous Media

 The movement of the particles (which conform the continuum medium) can be
described by the evolution of their spatial coordinates (or their ‘position vector’) in
time.

 We need to know a function for each particle (identify by a ‘label’), which provide
the spatial coordinates xi (or the corresponding vector) in the successive instants
of time.

 As a label, to characterize unequivocally each particle, it is possible to use the
‘material coordinates’.

In this manner, the ‘movement equations’ are obtained:

Which provide the spatial coordinates as a function of the material ones.

The ‘inverse movement equations’ are given by:

Which provide the material coordinates as a function of the spatial ones.



Fluid Flow in Deformable Porous Media

Description of the movement
Material description: A property is described (i.e. density ) using as argument
the material coordinate.

Note that if we fix X=(X1, X2, X3), we are following the density variation
specific particle.

Because of that the name of ‘material description’(Lagrangian description).

Spatial description: A property is described (i.e. density ) using as argument
the spatial coordinate (Eulerian description).

Note that if we fix x=(x1, x2, x3), we focus the attention on one point of the
space; and we follow the density evolution for the different particles that are
passing for this fix spatial point.



Fluid Flow in Deformable Porous Media

Olivella and Argelet (2000)



Fluid Flow in Deformable Porous Media

Temporal, local, material and convective derivative.
Consider a given property and their respective descriptions material and spatial.

We pass from one description to the other by using the ‘movement equations’

Local derivative: it is the variation of a property in time of a fix point in the 
space. 

It is possible to write this derivative as:

Material derivative: it is the variation of a property in time following a specific 
particle (material point) of the continuum medium.

 It is possible to write this derivative as:

local derivative

material derivative : Dalso denoted as
Dt



Fluid Flow in Deformable Porous Media

If we start with the spatial description of the property and we consider implicit 
in this equation the ‘movement equation’:

We can obtain the material derivative (i.e. following the particle) from spatial 
description:

We can generalized that definition for any property (scalar or vectorial): 

Velocity is the derivative of movement equations respect to time:

Finally:

material derivative

material derivative local derivative convective derivative




D
Dt



Fluid Flow in Deformable Porous Media

Volumetric strain:       u x y zd d d
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Fluid Flow in Deformable Porous Media

MASS BALANCE OF SOLID

    
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(Eulerian description)

(Lagrangian description)

(Material derivative) 

(4)
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(equation 2) 



Fluid Flow in Deformable Porous Media

Volumetric strain:

yx z
dd dd
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Detailed description of solid 
density variation (including rock 
compressibility Cr) can be found in 
Lewis and Schrefler (1998).



Fluid Flow in Deformable Porous Media

 Flow Equation – Water Saturated Porous Media

 Water Mass Balance Equation
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Replacing (4) i.e. solid mass balance in material description
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This term considers the velocity of the liquid respect to the solid skeleton (ql) + the velocity of the solid
respect to a fix reference system . This is because the solid is moving now and drag the liquid phase
with it.
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

       u q (Lagrangian description
Mass Balance of Water)

 If liquid density is constant
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 If there is a source or sink of water
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 If solid density is constant
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 Flow Equation – Water Saturated Porous Media

 Water Mass Balance Equation
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Specific for each geomaterial

Mechanical problem for geomaterials:

 Equilibrium Equation: 

 Principle of Effective Stresses:

 Stress-strain relationship: 

0bσ 

Iσσ  fp'

 dσ' D dε

HM FORMULATION



0bσ 

Iσσ  fp'
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Vargas et. all 2006
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HYDRO-MECHANICAL COUPLINGS:

 Rock porosity: 

 Rock permeability: 

      0.11 

 usst








 u

tdt
d

   
dt

d
dt

d
dt
d vs

s








 11

(mass conservation of solids)

(material derivative )

(porosity update)

  ib   expikk
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Other: Kozeny-Carman

u  v
v

dt
d 



  owS
Dt

DS
Dt
SD ss

s

s ,           0)1(  

 
 qu

Hydraulic problem: two phase flow equations for deformable porous media

where:

 gkq 



 


 pkr

s





u

q

g~

rk
k


p

1 oSwS woc ppp 



  rk

cp



porosity
fluid saturation
fluid density
Darcy flow
phase viscosity
Solid velocity

permeability tensor
fluid relative permeability
fluid mobility
Fluid pressure
capillary pressure
gravity
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APPLICATION:

Primary Recovery – Reservoir Depletion

Volumetric strain in mass balance equations:

Compaction-driven mechanism

u


 )1()1( 

 s
s Dt

D
Dt
D

Pressure maintenance

Porosity
decrease





qv 

Increase of fluid
flow apparent 
velocity

  owS
Dt

DS
Dt
SD ss

s

s ,           0)1(  

 
 qu

Later...
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Numerical scheme to solve the coupled problem:

0bσ 

Iσσ  fp'

εDσ' 

   0)(



 u

  sq
t

s

 gp
kk

q r ~





 




M: (u)        H: (p)
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







 
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
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











q
f

p
u

H0
QK

p
u

SQ
0C

p-u

T dt
d

:  Formulação

u – displacement
p – pressure
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L. C. Pereira (MSc, 2007)

Fluid Flow – Geomechanics Coupling

Pore pressure Transmissivity

Effective stress Permeability

PorosityRock deformation

Geomechanics Simulator
FEM

Reservoir Flow Simulator 
FDM
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Coupling Schemes

Pseudo-couplingIterative

Implicit Explicit



L. C. Pereira (MSc, 2007)

Advantages

Implicit Iterative Explicit Pseudo

Disadvantages

Computational 
costs

Convergence 
control

Changes in 
numerical code

Accuracy

Speed 

Iterations

Coupling Schemes



Stress-split Method

Coupling with
commercial 

reservoir simulators

Workflows to exchange 
parameters between 
individual modules


