UFPE

Introduction to Reservoir Geomechanics

2 Constitutive Laws: Behavior of Rocks
Fundamentals of Pore-Mechanics.
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Earth Sciences and Engineering:
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Deformable Porous Media

R

UFPE

> Stresses
v" Continuum mechanics deals with deformable bodies.

v The stresses considered in continuum mechanics are only those produced by deformation
of the body.

v/ Stress is a measure of the average force per unit area of a surface within a deformable
body on which internal forces act.

v It is a measure of the intensity of the internal forces acting between particles of a
deformable body across imaginary internal surfaces.

v These internal forces are produced between the particles in the body as a reaction to
external forces applied on the body.

v'In general, stress is not uniformly distributed over the cross-section of a material body,
and consequently the stress at a point in a given region is different from the average stress
over the entire area.

v'Therefore, it is necessary to define the stress not over a given area but at a specific point
in the body.
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Deformable Porous Media

Normal and Shear Stresses:

Definition:
_ AF;
7T A AA,

stress vector
(acting in a infinitesimal surface)

Decomposition of stress vector:

Normal stress: 0 = —;

Shear stress: — _P -
T A” A/,l, O
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Stress Representation

In 3 dimensions: h

X Jr Xy sz 1
s = Sy =T, O, 2|
_Sz_ sz z) O-z k

for a body in equilibrium,
subjected to external load

v
Defined for each point /D
LT
N




Stress Representation
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Mohr Circle:
o, T,
T)"-V O-}"

=)

Extract from the Mohr circle
changes of normal and shear

stress with orientation

3D representation of Mohr Circle:

‘t“

Tmax
Ny
T ————%\/
c c2 G 1

o2

Stress (kbar)
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Deformable Porous Media

» Cauchy Stresses

v According to Cauchy, the stress at any point in an object assumed to behave as a
continuum is completely defined by the nine components of a second-order tensor of type
known as the Cauchy stress tensor.

o, T, T.
=T O, 1,
Z |z sz GZ ]
Y e.g. 7,, acts on the x face in the y direction,
X

v The Cauchy stress tensor is used for stress analysis of material bodies experiencing small
deformations.

v'For large deformations, also called finite deformations, other measures of stress, such as the
first and second Piola-Kirchhoff stress tensors, the Biot stress tensor, and the Kirchhoff stress

tensor, are required



Deformable Porous Media

v’ Stress Sign Convention

In Soil/Rock Mechanics compression is

considered as positive and tension as negative.

1t

4
>Rl -
)

Compressive stresses Tensile stresses
are positives are negatives
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Stress, stress changes in space and time

Principal stresses:

In 3 dimensions :

o, =max(o,,0,,0,)
c,=min(oc,,0,,0,)

o, = the remaining component

Rotation of b \
reference axes o

o

Among the infinite number of triplets of

planes which satisfy the fundamental
X ‘ stress Theorem, there is always one set

(=abc) on which no shear stress is present.

O, xy Ty O, 0 0
c=|7, O, T, 6=0 o, 0
T T O] 0 0 o5,

full tensor diagonal tensor
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Stress, stress changes in space and time

» Principal Stresses

v The Cauchy stress tensor obeys the tensor transformation law under a change in the
system of coordinates.

v'A graphical representation of this transformation law is the Mohr's circle for stress

v" At every point in a stressed body there are at least three planes, called principal planes,
with normal vectors, called principal directions, where the corresponding stress vector is
perpendicular to the plane and where there are no normal shear stresses.

v'The three stresses normal to these principal planes are called principal stresses

o 0 0
O, 20,20, - Principal stresses =0 o, O
0 0 o
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Stress Representation

Stress state in lab experiments:

1- 1° 1
G AN, <N

_ _ — [~— —_— | et — ~ _
o, 0 O - & o, - o, 0 0
=0 o 0| — — — - o=|0 o; O
0 0 o 0 0 o,
Hidrostatica Uniaxial Triaxial
O,= 0, O3 0,#0.0, O3=0 e O3
o, 0 0 .
0 = 0 0 0 Tmaxf-————————=
13




TRIAXIAL TEST

o
G = 300 kPa
G = 200 kPa
G = 100 kPa

&, (axial strain)

Mohr-Coulomb criteria for shear strength (minimum 3 samples):

. e"\o
A T (shear stress) et pased cr\t— -
E“\'e\op ? == ] [ r
oht-CoNOT == 2 t=C +0 xtan¢

» & (normal stress)




TRIAXIAL TEST
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Test '3 (c'y. ©'3) c'y 1/2(c’y - ©'3) 1/2(c’y + ©'3)
(kPa) (kPa) (kPa) (kPa) (kPa)
50 200 250 100 150
2 140 335 475 168 308
3 300 520 760 260 500
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Stress Fields

Principal stresses and principal planes of stress:

Very useful because
i) the position of principal surfaces of stress can often be identified

ii) the orientation of structures (faults etc) depends on the position
of the principal stresses

tension due
to water load

) \ R
3CI % NN e e o
A R T
[ Display \z\'e‘ctsr&s‘uf\gg:sﬁfa\cﬁ\hi |\~:§:\\§§\:\\t\\§\:‘:\x\m
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Stress Fields

In 2D analysis: stress field and displacement field:

Finite element analysis of a tunnel excavation:

RN
o] WG
LG AR

g T o
[ Display Vectars of Stress, All factor 0.07. |

—— [ Display Vectors of Displacements, [Displacements| factar 10. |

Mesh Stress field Displacement field




Stresses are related to Strains

» Axial behavior

v" Example of elasto-plastic behaviour: tensile test (1D) in metals

b F Vielding
\ c
4 A
Elastic
behavior
o) B D -




Stresses are related to Strains i’l?

> 3D behavior
c'=D-¢ mmm) stress-strain relationship

b D: constitutive tensor ‘ Elasticity

Visco-Elasticity

CAP Model: El lasti Iti hani del Plasticity
odel: Elastoplastic multi-mechanism mode Visco-Plasticity

Damage

compaction cap
'(’

: O
Compressmnl . mo,

(Pore Collapse) ‘s

Q
>

g,

Tension

(Fracture/)




Strains are related to Displacements
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] Strain Tensor

Cauchy’s infinitesimal strain tensor:

E

1

2
1

X

—_ yxy

57 x

2

1

2

yxy

E

1

2

y

7/ yz

1
e
1

27

E

z

Compatibility conditions:

€=—
2

1

(Vu+vu’)




Strains
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extension/contraction:

P
/ :
: /
/ L'
0 0
Initial Shifted
positions positions
L—L' AL
EfE = = ——
L L

distortion:

Q

Initial
positions

' = —tanV¥

Shifted
positions



Strains are related to Displacements
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] Strain Tensor

v Compression +
v" Small deformations :

:%(Vu+VuT)

or.

8u ov

= g = —_—
o Y0y

ov Ju
Vi =0y 10, = o o
0. +0, = ow ) ou

ox Oz
~6_+0, = 8w+8v

Symmetric part of the
displacement gradient tensor

Displacement vector
u = (u,y,w)T

Component x: u
Componenty: v
Component z: w

. ow
- 0z
Xy gyx = 2gxy



Strains are related to Displacements

UFPE

] Strain Tensor v Compression +

v" Small deformations :

Displacement vector
u = (u,y,w)T

1 Component x: u
y & =— (Vu + VuT) Component y.v
Component z: w
2
Symmetric part of the
o r: displacement gradient tensor
. = ou . = ov . ow
T Ox Y Oy T 0z
volumetric strain: |[¢ = o _ V-u=¢g +¢& +g& | Diversenceoftne
* v V o — “x y z | displacement vector
0
|F
Note: =

Stress Sign Convention:

if positive for compression

______________




Equilibrium Equation

MOMENTUM BALANCE (EQUILIBRIUM)
> Consider a volume of a porous medium.

> If inertial terms are neglected, the distribution of total stress within this
volume can be shown to satisfy the equilibrium equation.

0
— I 4F = =123

V-e6+b=0

>»Where the o;; (or c) is the total stress on the medium and F; (or b) is the
body force per unit volume of the medium.

»>The nine stress components are shown in figure above.



Equilibrium Equation

MOMENTUM BALANCE (EQUILIBRIUM)

> Consider a volume of a porous medium.

> If inertial terms are neglected, the distribution of total stress within this
volume can be shown to satisfy the equilibrium equation.

0o, _
—"4F =0 i=1,2,3
an

or

V-(e+ta-p, - 1)+b=0

(o)

>»Where the o;; (or c) is the total stress on the medium and F; (or b) is the
body force per unit volume of the medium.

»The nine stress components are shown in figure above.



Equilibrium Equation

MOMENTUM BALANCE (EQUILIBRIUM)

> Consider a volume of a porous medium.

> If inertial terms are neglected, the distribution of total stress within this
volume can be shown to satisfy the equilibrium equation.

0
— I 4F = =123

or

—
V-D-g+a-p,-D)+b=0

>»Where the o;; (or c) is the total stress on the medium and F; (or b) is the
body force per unit volume of the medium.

»The nine stress components are shown in figure above.



Equilibrium Equation

MOMENTUM BALANCE (EQUILIBRIUM)

> Consider a volume of a porous medium.

> If inertial terms are neglected, the distribution of total stress within this
volume can be shown to satisfy the equilibrium equation.

( g A l
1 r
V-D. 5(Vu+Vu )+a-p, 1|+b=0
N \ / >

>»Where the o;; (or c) is the total stress on the medium and F; (or b) is the
body force per unit volume of the medium.

»The nine stress components are shown in figure above.



Effective Stress Principle
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» Pore Water Pressure, Total & Effective Stresses
» Effective Stress

v Terzaghi (1936) proposed the principle of effective stress®), the most
important equation in soils mechanics.

v" The effective stress (0’) is the component of the normal stress taken
by the soil skeleton.

v' Itis the effective stress which controls the volume and the strength of Karl Terzaghi
the soil. (1883 - 1963)

v Itis assumed saturated soil, water incompressibility and rigid soil particles.

(*) '‘All the measurable effects of a change of stress, such as compression, distortion and a change in the !
| | shearing resistance are exclusively due to changes in effective stress..every investigation of the stabili fy

| of a saturated body of earth requires the knowledge of both the total and the neutral stresses.”
' (Ter'zaghl 1936) '



Effective Stress Principle

>Normal Stress in the Stress Tensor:

c'=0-p,

O Multiphase material (solid and liquid)
O Incorporation of an additional variable: pore pressure

O Coupled phenomena (mechanical & hydraulic)
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Effective Stress Principle

The concept of effective stress is based on the pioneering work in
soil mechanics by Terzaghi (1923) who noted that the behavior of a
soil (or a saturated rock) will be controlled by the effective stresses,
the differences between total stresses and pore pressure. The so-
called “simple” or Terzaghi definition of effective stress is:

Effective Total Fluid Identity
Stress Stress Pressure Tensor
Tensor Tensor



Effective Stress Principle
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e the soil particles
A saturated porous medium comprises two
e the pore water

phases:
> <
r oy y
_ . P r
- (am )y
P Ly
I~ —
Saturated soil Solid Skeleton Water

The strengths of these two phases are very different:

v" the soil skeleton can resist shears. Two basic mechanisms:
e inter particle friction
e particles interlocking

v" the shear strength of water is zero

e water can only sustains isotropic pressure.



Effective Stress Principle

v'Physical Interpretation

HUHH

RRRRRRRRRRURRRERANEI

0]

- >

Ay

O': total stresses externally applied

O': stresses that act through the contacts
between particles (A,,)

P, : water pressure (A, )

A : total area

A= A+ A,



Effective Stress Principle
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c=06—-p,-1

In terms of normal components: ¢'= g — Py

It is relatively straightforward to see that the stresses
acting on individual grains result from the difference
between the externally applied normal stresses and the
internal fluid pressure. If one considers the force acting
at a single grain contact, for example, all of the force
acting on the grain is transmitted to the grain contact.
Thus, the force balance is

Fr=F

which, in terms of stress and area, can be expressed as

O-.AT =O—c.Ac+(AT_Ac)pf

where A is the contact area of the grain and o is the effective normal stress acting on
the grain contact. Introducing the parameter a = A, /Ay, this is written as

oc=ac,+(l-a)p,

The intergranular stress can be obtained by taking the limit where a becomes vanishingly

small

limao, =o'
a—0

such that the “effective” stress acting on individual grains, ' is given by

o'=c-(l-a)p,=0-p;,

Stress = Force/Arearyial
S = F/A;

(Acting outside an impermeable
boundary)

HHH

RAAAE

A.A AN

A‘A

Pore pressure actingin pore space

(Zoback, M. D., 2007)

b.
Stresses acting on grains

Ay
e /
O¢
|
e ——Ac
A7 Tt
Py T ¢
—
T

, for very small contact areas.




Effective Stress Principle

The strength of the soil skeleton and the pore water are so
different, therefore it is necessary to consider the stress
acting in each phase separately

> ¢
Vnr“
1

—»
s

N
-
P 9

N <

| S

Pw
L Water pressure

Soils as one phase
U‘ Total Stress material

%



Effective Stress Principle 5

> Based on experimental information it can be concluded that Terzaghi's
definition of effective stresses works well for a number of soils, but for

other cases it needs an upgrade.
> A more general law for effective stresses can be expressed as:

'
6=0—-a-p,-l
It is and extension of the one proposed by Terzaghi (c'=c-p,)
where o is a physical constant known as Biot parameter.

> Geertsma (1957) and Skempton (1960) suggested:

i
where: !

K: is the drained bulk modulus of the dry aggregate or rock

(i.e. porous medium skeleton).
K : is the bulk modulus of the soil's/rock’s individual solid grains



Effective Stress Principle 5

> Based on experimental information it can be concluded that Terzaghi's
definition of effective stresses works well for a number of soils, but for

other cases it needs an upgrade.
> A more general law for effective stresses can be expressed as:

6=6—-a-p,-1

l

— 1 — K K Biot’s constant
o =1-. / <,

/o

Bulk modulus of the overall skeleton Solid phase (rock grains) bulk modulus

For rocks, it is important to take into account the Biot’s constant. a <1

For soils, it is equal toone. «a =1
For unconsolidated or weak rocks, it is close to one. o ~ 1



Effective Stress Principle 5

a=1-K/K,

> It is clear that: 0<a<1

> For solid rock (i.e. practically no interconnect pores): K=K,

Iim o = L~ G.
¢—>00L 0 © Y o v

Therefore the pore pressure has no influence on porous media behavior.

» For a highly porous soil (e.g. soil with an open structure): K <<<K,

Iima =1 =G. — g
551 G,;=GC,;~ P9,

Therefore the pore pressure has the maximum influence and the Terzaghi
principle of effective stress is recovered.



Effective Stress Principle
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G,=0,—0p3d,

Biot’s Effective Stresses
» Measured values of o (Biot's parameter) for two porous materials:

1
v" Uncemented Sand
0.9 -
v Sands-l—one DRY OTTOWA SAND
¢ =0.33
0.8 -
» In both cases o decrease |g
. . . [N —
with confining pressure < 07
0.6
DRY FOUNTAINEBLEAU SANDSTONE
0.5 - ¢ =0.15
0.4 | 1 I ] [
0 10 20 30 40 50 60
Pressure (MPa)

Zoback (2009)



Effective Stress Principle
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Biot’s Effective Stresses (Lade & De Boer, 1997)

(a) Separate ¢——p  Gradual <«— (b)Solid rock with

grains with transition interconnected
contact points pores
Soil ¢ > Rock
Porosity .

Strength «”
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Derivation of Biot’s Constant
(Lewis and Schrefler, 1998)

UFPE

Elasticity (solids): do =D - ds

Poro-elasticity for soils: de'=D -dg

(incompressible grains)
(dG': doe — dpf . I) Incremental form

For rocks, we have to consider that the pore pressure p. induces hydrostatic
stress distribution in the solid phase (compressible). The ensuing deformation
is a purely volumetric strain:

d d
Pr orin tensorial form  dg’ = P
K 3K |

N

S —
de, =

The effective stress causes all relevant deformations of the solid skeleton.
The constitutive relationship should be rewritten as

Elastlc strain tensor Total strain tensor

other
de'=D -de° =D - (ds—ds % % /me°hamsm5) D (de—ds’)



Derivation of Biot’s Constant
(Lewis and Schrefler, 1998)

UFPE

So, considering the deformations of the solid skeleton as new deformational
mechanism:

d

ﬂ Biot’s definition of
effective stress

3K,

de'=D-(de—-de))=D-de-D-I-

On the other hand, using Terzaghi’s definition of effective stress:
c=c¢+l-p, = do=do'+1l-dp,

ap ,
= dc:D-(da—daf,):D-da—D-I-3?+I-dpf

Biot’s constant:
1
“ = do=D-de+|1-D-1-— |dp,
\ 3Ks

K Corrected
— dc—[l——j-l-dpf =D.de ‘ effective
K stress!!

S



Derivation of Biot’s Constant
(Lewis and Schrefler, 1998)
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Biot's effective stress: dc"'

K
dc_(l_K_j.I.dpf =D -dsg

S

|

Biot’s constant:

a

This is the stress which directly induces rock deformation:

de''=D-dg



b
Stress Path

) Stress path in 3D

A O

B(o,,0,,05)end

Stress path

It is generally complicate to
draw the stress path in 3D

We tend to work with
invariant if stresses rather
with the full stress tensor

We use a lot trixial conditions,
in Wthh 02:U3

Under this condition we can
work in 2D, with 0; & gz only

This is what we generally do
with the Mohr circle.
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Stress Invariants

v The components of the stress tensor
depend on the orientation of the
coordinate system at the point under
consideration.

v'However, the stress tensor itself is a
physical quantity and as such, it is
independent of the coordinate system
chosen to represent it.

v'There are certain invariants associated with every tensor which are also independent of the
coordinate system.

v" A vector is a simple tensor of rank one. The value of the components will depend on the
coordinate system chosen to represent the vector, but the length of the vector is a physical
quantity (a scalar) and is independent of the coordinate system chosen to represent the
vector.

v'Similarly, every second rank tensor (such as the stress and the strain tensors) has three
independent invariant quantities associated with it.

v'One set of such invariants are the principal stresses of the stress tensor.



Stress Invariants
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Invariants of the Stress Tensor (o)

/=0, =0,+0,+0, =0,+0,+0,;
1

_ 2N _ 2 2 2
[, = —(Gy.ay. —0;; )= (GxGy +0. .0, + GyGZ) +T,, +T.+T,,

2
=—(0,0,+0,0,+0,0,)

2 2
I;=detoc =000, +27 7 7, —-07T, —0T,

Xy~ xz"yz

— 0,7

O

X

Tyx

zX

2 _
w — 010,03
Xy Xz
Gy TyZ
O
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Stress Invariants

] Stress Deviator Tensor

v The stress tensor can be expressed as the sum of two other stress tensors:

= A mean hydrostatic stress tensor or volumetric stress tensor or mean normal stress tensor,
which tends to change the volume of the stressed body;

amzé 1:§(0x+ay+az)

= A deviatoric component called the stress deviator tensor, S, which tends to distort it.

=0 1+s
m
I—» Mean normal stress
_Gm 0 0 | Gx B Gm Txy Xz
Ghydrostatic = 0 o, 0 Gdeviator =8 = Tyx Gy _Gm Tyz
i 0 0 O, | B zx zy 6,-0, ]
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Stress Invariants

] Invariants of the stress deviator tensor

s=6-o0, 1
Jl = (0 =0because , the stress deviator tensor is in a state of pure shear
J, =1 =—(s.5, +5.5 + N B N
, = 2SijSij =—(s,5, + 5,5, SySZ) T, tT.+7T,.
_l(z_l_z_l_z)_l_z_l_z_l_z
—2 S Sy S, Txy T, TyZ

| 5 2 2 2 2 2
:g[(ax_ay) —I—(GX—GZ) +(Gy_62) :|+Txy+TXZ+TyZ

J, =dets

1
Jz :[2 _5([1)2
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Stress Invariants

Some stress invariants:

Effective mean stress (volumetric behavior):

Sz S.ry Szz Or — 0 Ta:y Trz
Deviatoric tensor (shear behavior): S= Sy Sy Sy | = Tey Oy —0 Ty
Szz Syz Sz Tos Tyz . — 0

vz X

Deviatoric (shear) stress: | j = g\/(g'x -p') + (G'y—p')z +(c'.—p') + T'xy2+fv E A

343

Lode angle: 1 det(S)

9=—§arcsin 2 —30°<60 <30°




Tmax

T3
T1

triaxial
compression

Lode angle: 1

0 = —garcsin

triaxial
extension

-30°<60 <30°

UFPE



Schematic diagram of a

triaxial compression apparatus

can be <« Ao =Differential stress
varied
during the |[<— Py = Pore fluid pressure
experiment
_ﬂ
—
P, = Confining pressure —
Moveable Piston
Chamber
Input for
media used to
exert confining
pressure, o,
Lode angle: 1

0 = —garcsin

Stress state in cylindrical specimens  ve
in compression and extension tests

6 =30° 6 =-30°
: /Chamber and heater E , E ’
Jacket L b
// §
/Speclmen — - --de— 0y —}f-- --4e— 0y
P P
I I
/! /.
/ A
I 3 ]
\'T'/ \_I___/
Compression Extension

0y>0=03=F-F 03<0j=03=F.-P

0 0;=AU+PC—P| 05=PC-P|"AU

0}, 05, 63 = Maximum, intermediate, minimum effective
principal stresses

P. - P; = Effective pressure

-30°<60 <30°
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Stress Invariants

Deviatoric plan: 5

o3 J-p’ space
(for a fixed Lode Angle)

Potts & Zdravkovic (2001)



Stress Invariants

J-p’ space: 5



Stress Invariants
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J-p’ space:
J

shear 8
behavior

9

4 P

volumetric
behavior

Better than this...

Material understands J-p’ space
but not Cartesian space!

B(o,,0,,05)end

Stress path




Representation of Constitutive Models ﬁ?

J Mohr Coulomb Model in terms of Principal Stresses (2D)

The relationship between the principal stresses at failure and the shear strength parameters
is:

0,-0; _ 01’+<J§+ A Vo
= - 1sing 0,-05)=
2 { 2  tang ( : 3)

T A

(0} +0%)sing'+2c'cos¢

r=c +o'tang’

tan ¢’ 2

F=(c/-0;)—(o/+0;)sing’—2c'cos¢’' =0




Representation of Constitutive Models =

v'Mohr Coulomb Model in Principal Stress Space (3D)

G'1=G 5= c5'3

c5'3 | /

v' Mohr - Coulomb failure
surface is a irregular
hexagon in the principal
stress space

6'1

F=(c/-0;)—(o/+0;)sing’—2c'cos¢’' =0




Representation of Constitutive Models =

> Mohr Coulomb Model in Principal Stress Space (3D)

TRIAXIAL COMPRESION TEST (TCT)
For TCT the Lode Angle: © =+ 30°
The plane (p',J) is the one that pass thought OO'A



Representation of Constitutive Models 5‘3

> Mohr Coulomb Model in Principal Stress Space (3D)

\J

G!

c

TRIAXIAL EXTENSION TEST (TET)
For TET the Lode Angle: © =- 30°

The plane (p',g) is the one that pass thought OO'F



Representation of Constitutive Models
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> Mohr Coulomb Model in Principal Stress Space (3D)

f 9, =0;,=0,
AC, B
E
D
’l.-l’
O-’

C
A—>o,>0,=0, = 0,=0|, 0, =0. =0},
'

! __ ! ! ! __ ! ! ! __ 4
0, F—oo,=0,>0. = 0,=0,=0], 0,=0;

v’ Yielding/failure for TCT (OO'A)
corresponds to a stress path with 6:+30°.T

v'Yielding/failure for TET (OOF) corresponds
to a stress pathwith  6=-30". 4

v We may need to predict yielding or failure
for any stress path (i.e. any 6) A

v We can use a function g(8) that generalize
the yield/failure surface to any stress path
(i.e. any ©)

F EJ—(—p-I—a)g(Q) =0; where
sin ¢ c

;a =
g(0)

g(0) =

cos@+Tsin9sin¢
3




Mechanical Constitutive Behaviour

More about stress-strain relationship...
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Linear Elasticity — Isotropic Materials

Compression test:
Uniaxial compression

60 T L] T
o tests in reservoir rocks:
50 Failure _'i’ . 40.0
D y o o000 o,
o P . 35.0 I oot °
- Inelastic Behavior P :
© e ] 300 o
K £ 250 ",f:’
s : = G
el Unloading Z 20.0 r% 4
gw ) ) (Dynamic) 7" i
@ Elastic Behavior Young's Modulus g .
Z 150 o
il / = ! 1001 §
Loading 4
—(Sttic) _ 5.0 37,
/ Young's Modulus 74
1wt g 0.0 ¥—r—1—/—"F""—"—"r"—-"r—"r—""r""—""r—"T""T"T""TT"TT"TTT—TTT
/ o 0.00 0.01 0.02 0.03 0.04 0.05 0.06
/ - t/rack Closin: a strains /
(Zoback, M. D., 2007) /| /7 ’ \ ——
%— oo 0004 0006 0 001 (Jandakaew, M. and Chevrom, 2007)
Deformation, mm

Young modulus: £, = —0,
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Linear Elasticity — Isotropic Materials

Deformed sample subjected to uniaxial stress:

F
| ‘ O-y:o-z:’rmy:'rmz:Tyz:O
T
L |—D—= L' |=—D —— L L
D—-D'
Ey = >0
| Gy D

(Fjaer, E. et al., 2008) F f —]
y

Poisson ratio:



Linear Elasticity — Isotropic Materials
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Physical interpretation of elastic modulus:

AXIAL STRAIN: g = ou,
OX,
LATERAL Su.
EXPANSION: €4 = —
Ox 4
X1‘ l l l
f.— I&‘H —_: I
] :
. ou. | i
A % | ax,
3 -
tttr-
+ ax‘ >
Young's : i ) )
modulus, E Poisson’s ratio,v
€34
E=c” v=_.33
1 1

a.

6X|

SHEAR STRAIN:

X4

Shear modulus, G
SU— only non-zero stress

2\ &3

< X3‘

VOLUMETRIC STRAIN:

€y =&, TE, +E

Bulk modulus, K
(Compressibil = K-1)

(Zoback, M. D., 2007)

/ [ p = mean stress
K = bulk modulus

g, = volumetri ¢ strain

I
~
M

.
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Linear Elasticity — Isotropic Materials

Relationship between elastic modulus:

. _ 1+v A _ 7
E=3K(-2v) K=x— ro o X Lamé constants:
2 1+4v G A
2 = 26G(1 K== — =1-2
E=2G(1+v) 3G1—2u T C v G
_ IRG K=x+2G '\+2G—2(1—V)
T 3K+G 073 A+G Uniaxial compaction
modulus:
3\ + 26 GE 3\ +2G
_ - =2(1
E=6771¢ K=96 38 rg A H
A A 2w 3\ + 4G
E=-(1 1—-2 - = =2(2-
AT =) | m =) ra 22 Bulk modulus:
4 3K —2G
H=\+2 H=K+ -G = ——
M "3 " T 2BK 1 6) K:&_)\_FEG
Evol 3
H=p— """ H=262""Y H=3Kk1="
1+ v)(1—2v) 1 —2v 1+ v




Linear Elasticity — Isotropic Materials

UFPE

Homogeneous isotropic material:
0r = (A +2G)e, + Aey + Ae, or: Oij = )\51;0152.13. + ZGE??J'
oy = Az + (A +2G)ey, + Ae,

0. = Aex + Agy + (A +2G)e. wer | 1 sei=j

0;i =
Ty = 2G T, ? 0 sei#]
Tor = 2G 1, Kronecker delta
Toy = 2G 1y

Using tensorial notation:

c=D-¢ o Jo=D-de (incremental form)

where: D(E,v) isthe elastic constitutive tensor that relates
the stress and strain tensors.



Anisotropy

R

UFPE

If the elastic response of a material is not independent of the material’s orientation for a given
stress configuration, the material is said to be anisotropic. Thus the elastic moduli of an
anisotropic material are different for different directions in the material.

Most rocks are anisotropic to some extent...

The origin of the anisotropy is always heterogeneities on a smaller scale than the volume under
investigation.

Sedimentary rocks are created during a deposition process where the grains normally are not
deposited randomly. Seasonal variations in the fluid flow rates may result in alternating
microlayers of fine and coarser grain size distributions.

Due to its origin, anisotropy of this type is said to be lithological or intrinsic. Another important
type is anisotropy induced by external stresses. The anisotropy is then normally caused by
microcracks, generated by a deviatoric stress and predominantly

oriented normal to the lowest principal stress.

Note (Fjaer et al., 2008): In calculations on rock elasticity, anisotropy is often ignored. This
simplification may be necessary rather than just comfortable, because—as we shall see—an
anisotropic description requires much more information about the material—information that
may not be available. However, by ignoring anisotropy, one may in some cases introduce large
errors that invalidate the calculations.



R

Anisotropy

[1lustration of intrinsic (lithological) and stress induced anisotropy

For a general anisotropic material, each stress component is linearly related to every strain
component by independent coefficients:

Oij = Z Cijki€ki
k.l

Since the indices i, j, kK and / may each take the values 1,2 or 3, there are all together 81 of the
constants C,,

Some of these vanish and others are equal by symmetry, however, so that the number of
independent constants is considerably less: Cijx = Cjixt = Cijik = Cjux and Ciju = Cuij

with that, the number of independent constants reduces to 21.



Anisotropy: orthorhombic symmetry =

Orthorhombic symmetry: Rocks can normally be described reasonably well by assuming
that the material has three mutually perpendicular planes of symmetry.

oy = C116x + Cr2ey + Ci3é; Ty; = 2C441y;
oy = Ci2éx + Co26y + Cr3é; Txz = 20551k,
o, = C13ex + Cozey + C33¢; Ty = 2Ce661 xy

or using vetorial notation of stress and strains:

(%) (&)

Cn Ci2 Ci3 0 0 0 o o
Cpp Cxn Cx 0 0 0 O~" 8)'
Ciz Cx Cs3 0 0 0 o = < & — Z
o=C-¢ where C= [0 0 0 cuy 0 o0 Ty, |’ 2T,
0 0 0 0 Cs5 0 . 2 r
XZ Xz
O 0 0 0 0 C \ z z
o T_X_)’ ) \zrx-\* }

These stress—strain relations generally describe most types of rocks.

This model describes the elastic properties of any linear elastic material with or-
thorhombic or higher symmetry. Thus they may also describe an isotropic rock:

Cli=Cn=C3=24+2G Cn=Ci3=0C3=A C4a =Cs5 =Co6 =G



Anisotropy: orthorhombic symmetry 51?

Example: consider the uniaxial stress state defining Young’s modulus and Pois-

’ L . - - - - - L
son’s ratio. In this example, 0, =0, =0andz,, =7, =7, = 0. The stress—strain
relations become:

oy = Cr1&x + C2ey + Ci3é; (1) {
0= Cioex + Cr2ey + Co3¢; (2) I
0 = Cizex + Cr3ey + C33¢; 3) L =—D—= L D
0=2C44 F V2 (4) J .
0=2Css . (5) b
0= 2C66 I Xy (6) Deformation induced by uniaxial stress.
Solving the equations above (2,3) for ‘v = —¢, /e, we find
L & _ C12C33 — C13Cas
Ex CpnCi3 — C§3
while for v = —¢_ /e, we find (by interchanging indices 2 and 3):
L B _ C13C2 — C12Cx3
Ex C22C33 — C3,

Thus the value of Poisson’s ratio depends not only on the direction of the applied stress,
but also on the direction in which lateral expansion is measured.



Anisotropy: transverse isotropy =

Transverse isotropy: A special type of symmetry, which is relevant for many types of rocks,
is full rotational symmetry around one axis. Rocks possessing such symmetry are said to be
Transversely isotropic. It implies that the elastic properties are equal for all directions within

a plane, but different in the other directions. This extra element of symmetry reduces the
number of independent elastic constants to 5.

Assuming that the x- and y-directions are equivalent while the z-direction is the different
one, we may rotate the coordinate system any angle around the z-axis without altering
the elastic constants. For this to be possible it is required that Ci; = Cj, C13 = C»3,
C12 = C11 — 2Ce6, and Cqq4 = Css. The stiffness matrix for a transversely isotropic
material having the z-axis as the unique axis is then |m - 1

I |

Cii Ci1—2C¢6 Ci13 0 0 0 \ I L oe v g0 o) !

C11 — 2Ce6 Ci C3; 0 0 0 ! S o000 :

C = Ci3 Ci3 C33 0 0 0 IC— v v Lo g o ||
0 0 0 C44 O 0 P o 0o 0o %00 :

0 0 0 0 Cau O : 0 0 0 0 Lol

\ 0 0 0 0 0 Cg/ v Lo o0 000y

|

L____ Zeonstants

Transverse isotropy is normally considered to be a representative symmetry for horizon-
tally layered sedimentary rocks.

Stress induced anisotropy may often be described by transverse isotropy as well.



Realistic stress-strain relationship
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Realistic stress-strain relationships: based on experiments

The experimental apparatus:

¥ /¥ Drainage tubing

_ Piston

—+ Filters for flow
| measurement

Membrane
| Filter

Drainage tubing

o temperatures typically up to >1000°C

o high pressures more challenging and results
more questionable

o strain normally < 10%

o Typical duration of experiments < weeks
o typical strain rates = 10°sec! (in nature ca. 10
15 . 10-14)

Experiments are under uniaxial or triaxial
(rare)

Stress is applied along the axis of the
sample with varying confining pressure
(Pc).



Before Failure

Elastic deformation: some more detail?

AUl -AVIV 7w I v Natural bodies have
fractures to begin with

Stage I: the slope of the curve is low and tends to increase (more Ao needed per
unit deformation). The volume decreases (fractures close)

Stages II-III: The sample follows the correct elastic behaviour Fractures are
closed and new fractures are created spread in the body.

Stage IV: Things get “"out-of-hand” and the moment of failure is approaching.
More and more fractures are created and start linking creating longer fractures.
Volume starts increasing (dilatancy)

(associated to

Y Very important!! _, - c\ure)



Rock Failure ﬁ?

The strength of rocks

The stress you need to apply to have failure

Various factors

= Lithology: Important but typically overshadowed by other factors
such as porosity, state of alteration etc etc

B Temperature: Not important as long as deformation remains in the
brittle field

m strain rate: not very important

B Anisotropy of rocks: Quite important! oz — 0

Increasing
confining
pressure

B confining pressure: THE MOST IMPORTANT

Triaxial testing: typical influence of the confining /
pressure on the shape of the differential stress (axial
stress minus confining pressure) versus axial strain curves -
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Realistic stress-strain relationship

Bntt!e\\ o Ductile

Solenhofen Limestone

Rocks: i
It depends on the ;.

confining stress!!  “. PRr—

Strain Aates = 2X10'Ys
0 2 4 6 8 10 12 14
STRAIN IN PERCENT




Schematic representation
of brittle failure styles in
triaxial tests (Griggs and
Handin, 1960a).

a) Extension test.
b) — e) Compression test

with confining pressure
increasing to the right.

Rocks:

It depends on the
confining stress!!  “.

Extension test

Compression test, confining pressure increasing —»

a) * 6 b) 101 c) d) e)
N
01=05 0,=03
> - — -
7aN
1; A
Extension Splitting Shear Shear Distributed
fracture fracture fracture zone shearing
Typical axial strain
a{F:‘racture =<1% 1=9% 2-8% 5-10% >10%

Solenhofen Limestone

w
o
o

DIFFERENTIAL STRESS MPa
'S
i=
S

Strain

Z all runs at 25°

Rates : 2X10°Ys

0 2 4 6

8 10 12 14

STRAIN IN PERCENT




Shear Failure

UFPE

Experiment monitored with
the Mohr circle:

A critical circle is obtained
which defines the conditions
at which failure occurs

I
!
£

>
Axial differential stress, kbars q
|
|
¥
E‘l

1

- = 0.55 kbars
Longitudinal strain, % £ %%

2T Repeating the same experiment under
T | . different confining pressures one obtains
a series of critical circles

The failure envelope the stable field. This is
the Mohr criterion

This is a purely empirical result based on the
results of experiments
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Rock Volumetric Behavior

Dilation :
rock expansion under shear /’ Dilation!!

Rock

¥

Important
for geological
fault reactivation

Dense sand
(consolidated

geomaterials)

Loose sand
(unconsolidated

geomaterials)

before after




Tensile Failure ﬁ?

Tensile failure occurs when the effective tensile stress across some plane in the sample
exceeds a critical limit. This limit is called the tensile strength ( 7, ) and has the same unit
as stress. The tensile strength is a characteristic property of the rock. Most sedimentary
rocks have a rather low tensile strength, typically only a few MPa or less. In fact, it is a

standard approximation for several applications that the tensile strength is zero.
(Fjaer et al., 2008)

— Ty

- Brazilian Test: - Incorporation of tensile strength in failure surface:

T

A

Fissura R -

vertical Ctragdo = 7 D L e(\\\e\&‘)
Brazilian 5‘(\?}‘
-l test
— L = comprimento do
-7\cirpo de prova = 30cm

1§ D = diametro do corpo

de prova = 15cm
P / - 0
TENSION cutoff -Tg 3T,




Rock Volumetric Behavior
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Rock compaction .
Volume deacrease due to compression

Normal Consolidation Line (NCL):
Change of pore structure
(LIMIT to plastic compaction:

irreversible behavior)

Load/Unload Line:
No changes in pore st
(elastic deformation:
reversible behavior)

void ratio ¢

ructure

~—  Ah = subsidéncia

e ———‘— "

Ah = compactagdo

--------

07
06
L+
0S4
04
034
e Isotropic
; compression of
0.1 1 Bringelly shale
0 .

(0 W0 1000 10000 100000

mean etective stress p' (kPa)

Important for reservoir compaction
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Rock Volumetric Behavior

MECHANICS OF COMPACTION

Pressure Solution
Rotation and Closer Ductile Grain Breakage of At Grain
Packing Deformation Brittle Grains Contacts

<2 & .g. = 88
<% g5 4 o 88

(e.g., clays)
Non-Platy Grains
(e.g., qtz., feldspar)

Ductile Framework
Grain, e.g., Shale Rock
Fragment) Modified from Jonas and McBride, 1977

Irreversibility...



UFPE

Rock Volumetric Behavior

Rock compaction .
Volume deacrease due to compression

- Incorporation of elastic-plastic compressive limit in failure surface:

; CAP Model

TENSION cutoff
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Rock Volumetric Behavior

CAP model

Multi-mechanism model a \[—
‘IznA

Fixed YieldSurface  f,

Tension
Cutoff /3
T
b Increasein
\ - \

2

v
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Rock Volumetric Behavior

CAP model

Multi-mechanism model

Critical point:
no volumetric plastic strain

‘E Compression O,
. . Sp
O—l Dilation . ' .
£,
. . O-C
Tension Compression

(Fracture) }<~___ e (Pore Collapse) ‘A
/ In situ (initial) stress G




FAULT REACTIVATION

o
J21 spear
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3 o TR ol
S «
o V)
1 < L 11
l.—-

s En

HYDRAULIC RESERVOIR COMPACTION

FRACTURING




Coupling Between Deformation and Permeability ™

Hydrostatic Compression: GC’_JD Ex: Kozeny-Carman
e Kok P 0-g)

Effect of reservoir compaction: — — T1-¢ @)

Decrease of permeability due to ) o ¢,  reference porosity

(irreversible) pore colapse. ’ ' k, ‘intrinsic permeability for matrix ¢,

Interpretation using CAP model

11

A

/ g’
® > 3 -

3a, ip,
Stress path Plastic strain
(only volumetric)

Tensao efetiva média

Figura 2.1: Esquema da variagdo da permeabilidade na compressdo hidrostatica (David ef al. 1994). Sao
observadas trés fases: (1) fechamento de fissuras, (2) compactag@o dos poros e (3) esmagamento dos graos.



Coupling Between Deformation and Permeability ™

Hydrostatic Compression: Applied stress did not induce
further anisotropy

gl
L] 60 © Normal ao plano A
_ 50 mm ) p“_. A Normal ao plano B
— -— 0370, = 50
g O Normal ao plano C
- E
’ = 40
= . .
s S Intrinsic
< <@ 30 .
Plano A E s anisotropy
b (initially)
< 20
=
q s
| =
Plano C' Plano B & 10
—_—
0
S
1.0E-14 1.0E-13 1.0E-12 1.0E-11

Condutibilidade Hidraulica (m/s)
(a) (b)
Figura 2.2: Ensaio de compressiao hidrostatica de Kiyama ef al. (1996) para obtengdo das permeabilidades em

diferentes dire¢des: (a) Planos considerados nas medigdes da permeabilidade; (b) Resultados em tensdo
confinante efetiva versus permeabilidade.



Coupling Between Deformation and Permeability ™

Triaxial Compression:

(adaptado de Paterson, 1978)

I=-T I r—Ill-y AY I v
| | | |
| | |
1 I | 300
| | | =
| | o
| | =
[ | °
| ‘ = 200
| 2
I V a
| @
| k=
| g
| 10 100
w
dilat s
latancy Pt
[ateral stramn Axial strain 0 g
- , 1.0E-13
~—_Volumetric
strain

Anisotropy on permeability:

Kiyama et al. (1996)

I
—_——
T

10%

111

—_——

A

1
normal ao plano *A’
normal ao plano ‘B" |
normal ao plano ‘C’

\Y%

——y

A

YD

Permeability variation in a brittle rock in a triaxial compression test. This type In.tr|n5|c
of stress-strain behavior is widely reported in the literature. Anisotropy
We have five distinct regions:
o, L

I - closure of pre-existing micro-cracks _ - i
II - zone of elastic behavior
III - steady growth of cracks 03— =
IV - unstable growth of cracks | P
V- post-peak zone characterized by the loss of resistance -

(softening followed by rupture) of the material ’ O >03

1.OE-10 1.0E-09 | 1.0E-08
Permeabilidade (m/s)

Stress

Anisotropy

unu 001

Planlo C Plano B
—

e
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Fluid Flow in Deformable Porous Media

e

Volumetric strain: V-u=de +de +de,

du de de, dg.
=—* 424
dt dt dt dt

V.




Fluid Flow in Deformable Porous Media

MASS BALANCE OF SOLID

Mass balance of solid present in the medium is written as:

£ (p.(1-9))+V+(3.) =0

where p_ is the mass of solid per unit volume of solid and j is the flux of solid.

0

_(Ps(1—¢))+V'(ps(1—¢)1.1)=0 (1)

Ot
0d

(1-8) L2 —p, 2 p, (1-0)V -t (1-0)u Vp, ~p, 4 V=0

Ot

(2)



Fluid Flow in Deformable Porous Media

UFPE

Deformed
Configuration, t =t

x(B)

MASS BALANCE OF SOLID x=(X.)

Undeformed
Configuration, t=0

o(B)

Path line L~
I-‘_. 'l A)

%(P; (1—(|)))+V-(p§ (1—¢)u) =0 (Eulerian description)

:’ B X3
Ju(X)=U(x)

v'"When the description of motion is made in terms of the
spatial coordinates is called the spatial description or
Eulerian description,

v'That is, the current configuration is taken as the
reference configuration.

v'In the Lagrangian description the position and physical properties of the particles are
described in terms of the material or referential coordinates & time.

v The material derivative (or substantial time derivative) can serve as a link between ‘Eulerian’
and ‘Lagrangian’ descriptions of motion

v'A more convenient form of the balance equations is obtained considering the definitions of
material derivate with respect to the solid velocity; which can be expressed generically as:

D() _9(°) Fu¥(o) (3)

D¢t Ot



Fluid Flow in Deformable Porous Media

UFPE

Definitions:

v'Spatial point: fix point in the space

v" Material point: a particle.

v" The particle can be at different spatial points during its movement in time.

v Configuration (£1): space occupied by the particles (that conform the continuum
medium) at certain instant 't’

x:xla‘ +X:é, +XJEJ =X,e,

=1, is the reference time

), = initial material or reference
configuration.

€, = current configuration
Material coordinates (X;, X5, X3)

Spatial coordinates (x;, X,, X3) (current
configuration).




Fluid Flow in Deformable Porous Media

UFPE

v The movement of the particles (which conform the continuum medium) can be
described by the evolution of their spatial coordinates (or their ‘position vector’) in
Time.

v We need to know a function for each particle (identify by a 'label’), which provide
the spatial coordinates x; (or the corresponding vector) in the successive instants
of time.

v' As a label, to characterize unequivocally each particle, it is possible to use the
'material coordinates'.

v'In this manner, the ‘'movement equations’ are obtained:
x= (particala, )= 9(X,7) = x(X,?)
x, =9, (X, X5, X5,1) i€ {,2,3}
v'"Which provide the spatial coordinates as a function of the material ones.
v'The ‘inverse movement equations’ are given by:
X=¢ (x,t)ng X(x,1)
X, =09 (x,,%,,%3,2) i€ f1,2,3}

v'"Which provide the material coordinates as a function of the spatial ones.



Fluid Flow in Deformable Porous Media

UFPE

»>Description of the movement

v'"Material description: A property is described (i.e. density p) using as argument
the material coordinate.

p=p(X,r)=p(X,,X,,X;,1)

vNote that if we fix X=(X;, X,, X3), we are following the density variation
specific particle.

v'Because of that the name of 'material description’'(Lagrangian description).

v'Spatial description: A property is described (i.e. density p) using as argument
the spatial coordinate (Eulerian description).

P=P(I,!}= p(xl’xZ’x.‘i’t)

vNote that if we fix x=(x;, X,, X3), we focus the attention on one point of the
space; and we follow the density evolution for the different particles that are
passing for this fix spatial point.



Fluid Flow in Deformable Porous Media

UFPE

p(x,0)= p(x(X.1).1)= p(X,?)

FX,1)= F(X(x,0,1)= plst) )
&y X,y .,z
X,.Z, / (x.r.z’) ‘ ( )
f.zl.)“\ | ‘ =2 X2 | =I\)_‘ il :
*-.....:...‘.. ot { :_l_/__—: -:/.f
l = | -2-.—"-/ g i
-
X ¥ X”’;,
o XX

Olivella and Argelet (2000)



Fluid Flow in Deformable Porous Media

UFPE

Temporal, local, material and convective derivative.

v'Consider a given property and their respective descriptions material and spatial.
N(X,7)=vy(x,)

v We pass from one description to the other by using the 'movement equations’

v'Local derivative: it is the variation of a property in time of a fix point in the
space.

v'It is possible to write -

not Eh!(x,t)

local derivative =
ot

v'"Material derivative: it is the variation of a property in time following a specific
particle (material point) of the continuum medium.

v' It is possible to write this derivative as:

ot ol'(X,?) DT

material derivative = —T = also denoted as: ——

dt ot Dt




Fluid Flow in Deformable Porous Media

UFPE

v'If we start with the spatial description of the property and we consider implicit
in this equation the 'movement equation’:

Y(x1)=7(x(X,0),1)=T(X,¢)

v'"We can obtain the material derivative (i.e. following the particle) from spatial

description:
or(X,s)

material derivative :diy(x(x,t),;) -
1

v'Velocity is the derivative of movement equations respect to time:

dx(X,1)
of

= V(X(x,1),2) = v(x,1)
v'Finally:

dx(X 1)) _dv(xn) oy %, _dvxn dy ox
dt ot dx; Ot ot dx ot
v(x.if)
v"We can generalized that definition for any property (scalar or vectorial):

Dy dxxn  _  ax(x)
Dt dt ot

L —— ,
material derivative local derivative

- y(x,z) -Vy (x"),

convective derivative




Fluid Flow in Deformable Porous Media

UFPE

3

Volumetric strain: V-u=de +de, +de,

du de de, dg.
=—* 424
dt dt dt dt

V.




Fluid Flow in Deformable Porous Media ﬁ?

MASS BALANCE OF SOLID

0

E(R (1 _¢))+v . (pj (1 _(I))u) =0 (Eulerian description)

(Material derivative)

. —pP a_(ZIL)_I_px (1—(|))V-1.1+(1—¢)1.1ij —pjl.IV(I):O (equation 2)

‘ 0 . O .
p,(1-)V -+ (1-6) Lot (1-)uVp, -p, S+ —p, u V=0

Dp "Dy
1= ) == —_p =t
(1-¢) Dt P D¢

(4) (Lagrangian description)



Fluid Flow in Deformable Porous Media

UFPE

Volumetric strain:

Detailed description of solid

density variation (including rock

compressibility C,) can be found in V.
Lewis and Schrefler (1998). dt dt dt dt

da de. de, ds.
=—> 424




Fluid Flow in Deformable Porous Media
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U Flow Equation — Water Saturated Porous Media A
. q, : velocity
» Water Mass Balance Equation | ' "
19 i the solid
Py (pl¢) +V- (plql + pl¢u)l= 0 skeleton

|

This term considers the velocity of the liquid respect to the solid skeleton (q,) + the velocity of the solid
respect to a fix reference system (u) This is because the solid is moving now and drag the liquid phase

with it.

8,0 0 : : :
¢ L f +Vp,q,+p,Vq,+¢puVp +puVe+pdVa=0
\ ? y ,' 1
( |
Using (3) D p D¢
T ¢ Dtl+pl Dy q,+pVq,+pgVa=0
Replacing (4) i.e. solid mass balance in material description D¢ _(1-9) Dp, +(1—¢)V-1'1
Dt p, D¢
D p 1-¢) Dp, >
l ( ) +p, (1 —q?,)V ‘u+Vp,q,+pVgq,+pgVu=0

—5 L4
/ Dt P Jo, Dt

N



Fluid Flow in Deformable Porous Media ﬁ?

J Flow Equation — Water Saturated Porous Media

> Water Mass Balance Equation

D D °
¢ ZS)’[;Z +(1-9) Pr ZS)’L;S +pV-u+Vp,q,+p Vg, =0

N

D p, p, D,p ) i ioti
sy (1= sPs 4 hV -u+ V. — (| (Lagrangian description
¢ Dt ( ¢) p. Dt Py -8 (qu;) Mass Balance of Water)

S

> If there is a source or sink of water

/

D D )
5 s,01+(1_¢)pl S.pS+p,V-u+V-(,0;‘Iz):fl

Dt , Dt
» If solid density is constant » If liquid density is constant
D,p, '
¢—S;&+plv-u+v.(plql):0 V-aut+VvVg, =0

Dt 7 g



SUMMARY



HM FORMULATION

UFPE

Mechanical problem for geomaterials:

[J Equilibrium Equation:

V.e+b=0

[J Principle of Effective Stresses:

st'{a-pf-l]

[J Stress-strain relationship:

H

do'

= D-d¢g

{

Specific for each geomaterial
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HYDRO-MECHANICAL COUPLINGS:

[J Rock porosity:

% [(1 _ ¢)Ps ]_|_ V[(l _ ¢)Ps .li] —0 (mass conservation of solids)
de Oe
(material derivative ) i = Py +u-Ve

i 1 — d de (porosity update)
¢=( ) 'OS+(1—¢) : de, .
it p. dt dt =g, =V
Other: Kozeny-Carman
[J Rock permeability: k =Kk; exp[b(gb —@; )] N E%;
-t 4

¢,  reference porosity

Kk, :intrinsic permeability for matrix ¢,
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Hydraulic problem: two phase flow equations for deformable porous media

D5, p, +(1—¢) SaPo DibP;s |
Dt Dt

¢

where: S +S =1 DPe =Dy — P 1 = k,,
w o a ILtOC
¢ porosity K permeability tensor
S . .
«  fluid saturation ki  fluid relative permeability

Pq  fluid density
q, Darcyflow

fluid mobility

Ho  phase viscosity capillary pressure

u Solid velocity

ﬂ’a

Pq  Fluid pressure
Pe

§ gravity



APPLICATION:

Primary Recovery — Reservoir Depletion

Increase of fluid Volumetric strain in mass balance equations:
flow apparent
velocity Compaction-driven mechanism
vV, = %‘
Porosity
decrease

Pressure maintenance

DS S.p, D
¢ S apa+(1_¢) apa sps
Dt p, Dt

+S p.V-u+V-(p,q,)=0
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HYDRAULIC MECHANICAL:

B Water and oil flow: Darcy’s law

Ve+b=0

|

! I
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! : I
| q=-kK o( I
: * Water and oil flow driven by pressure gradients |
i » Permeability tensor |
| Ko =k ko te :
| k : intrinsic permeability tensor I
i K,q: relative permeability I
i He ! dynamic viscosity I
! I
| b ‘ |
! k =k, em)[b(go — @, .)]
! l." I
|
" SOLID BALANCE: :
|

| — : I
I E)(@S o, ) . _ (1- cﬁ)(lp ~de I
| L alfe 1V )(-+m'{:)=0 . (- g)—~
I o (Pale+ 95 p,  di d |
! I
! I
! I
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Numerical scheme to solve the coupled problem:

™

M: (u) H: (p)

vorb=o —G(Qisao;pa) +V(p,4q, +s5,p,0)=0 '.'_: |-OC u:—Ta(;, F“—T 'K —Q] [u] [f]
c=c+p,1 . -+ . —
¢'=D-¢ 4o = _k‘im (V o _pag) \;QT SJ , dt Lp’_JT -‘T*\_?ﬁ—r H J LpJ - \_qJ
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Fluid Flow — Geomechanics Coupling

Pore pressure

\ Transmissivity

Effective stress | Permeability
Rock deformation > Porosity

Geomechanics Simulator “ Reservoir Flow Simulator
FEM FDM

L. C. Pereira (MSc, 2007)




Resolve p,T U £.0
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Coupling Schemes

1
Iteragdes de
Newton-

l Raphson

Resolve p,T, k, ¢’
NAO

= Convergiu? >

T

Resolve u, 8,0

; 1
Iteragdes de
Newton-
Raphson

Resolve p, T

Pseudo-coupling
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Coupling Schemes

Implicit lterative Explicit Pseudo

Computational

costs A
Changes in

numerical code A

Convergence
control

Accuracy

Speed

Iterations

"\ Disadvantages

@ Advantages
:
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Stress-split Method

A new locally conservative numerical method for two-phase flow in heterogeneous
poroelastic media

Marcio A. Murad **, Marcio Borges?, Jesus A. Obregén®, Maicon Correa“



