UFPE

Introduction to Reservoir Geomechanics

5 Unconventional Reservoirs
Naturally fractured reservoirs, hydraulic fracture, proppant and fracture
closure model, validation (microseismicity).
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Unconventional Reservoirs

Permeability threshold (< 0.1 md) Meckel and Thomasson (2008)
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Unconventional Reservoirs

UFPE
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http://www.eia.gov/analysis/studies/worldshalegas/

Massive Multi-Stage Hydraulic Fracturing
The Technology

UFPE

The wellis placed close to the base of the
reservoir because fractures tend to rise as they
are formed by high pressure fluid injection.

Hydraulic fracturing “rise” occurs when the
fracturing fluid pressure gradient is less than
the local o, gradient.

Dusseault & McLennan (Canadian National Energy Board
-6 HF stages per well www.neb-one.gc.ca)
-vertical growth favored O3 X

orij ; )
-sand used as proppant (w) O

dilated zones

wells horizonts) or ||

drained
region

Multiple HF Stages along the Well Axis for Shale Gas Stimulation Microseismic Imaging of a Multi-stage Frac
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Consideration of Natural Fractures

UFPE

Objective of the proppant: to hold the fracture open and provide a highly

conductive path for fluid to flow
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The fracturing of a well creates a complex

preckodastorizs — network of cracks in the shale formation. This

is achieved by pumping water, sand and a
small amount of additives down the wellbore
under high pressure.

After these cracks are created the sand will
remain in the formation propping open the
shale to create a pathway for the gas to enter
the wellbore and flow up the well.
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Unconventional Reservoirs

Integrity of sealing rocks in reservoir-seal systems
subjected to fluid injection

(Source: The Old Speak Journal, 2011) (Rouainia et. al , 2005)

Fluid Motion
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; . ‘ ' § e ‘ e | Rocks at normal
2 5 fluid pressure

\ ) Fractured
mudrocks
Overpressure in .
Reservoir
the reservoir due to fluid (g i pressure)

R
injection (water, CO2,...)

Contamination of an aquifer caused by hydraulic fracturing
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Carbonate Reservoirs and Natural Fractures

Crato Formation - Araripe Basin (Tight Carbonate Analogue)

Fractures at different scales
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Fracture Network Modeling
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Natural Fracture Network

Some important questions about the characterization of rock fabric (Dusseault, 2013):

=>» What is the natural fracture fabric at depth?

Spacing, persistence, cohesion, roughness...
Mineralization, conductivity

=» Are natural fractures open or closed?

=» What is their orientation with respect to the principal stresses?

These are extremely challenging questions to answer with reasonable precision.
Outcrops are unreliable (weathering, different [c])
Full core is rarely collected in sufficient quantities

Geophysical methods (backscatter and reflections in borehole seismics) are in
development, but what about 3 km deep?



Natural Fracture Network

UFPE

- Frac low contr

Frac mixed high contr

- Frac dark high contr

Well

Outcrop

@ How many fracture sets? 3

Relative ages? F1 NE
F2 NNE
F3 WNW

| Numerically dominant? F3

Length dominant? F1

¥ Throughgoing? F1
| Stress?

Perm anisotropy? NE
Critically stressed?




Stress Field and Fractures
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Stress Field and Fractures

UFPE

Drivers:

Faults

Folds

Lithology

Porosity

Bed Thickness

Local and regional stress fields:

a3

regional

=)

oy
—

Colombian Andes,
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ress Field and Fractures

Drivers:

Faults

Folds

Lithology

Porosity

Bed Thickness




Leak-off test: obtainig the minimum principal stress (Smin) fﬂ?

2) Fracturmg 4) Reopening Al F,p-mw‘.n
/ - ,"o_J Mydrache Pumg|
3) Shut-in o.min= 0 Wiroben / Wal T B
1) Initial (fracture closure)

conditions P =0y /
-~ L S — F!-u Acqustien
x el {
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BREAKOUTS

Breakouts

Il, ISPG-EMR)

Este método baseia-se no la OHmax
mapeamento por perfil de -

imagem ou caliper de

regioes do pogo onde

ocorrem rupturas por

cisalhamento da parede.

J 8

DOWNHOLE ViEW

A direcao dos breakouts é
ortogonal a diregao da

maior tensao horizontal.

B el
.
-

CAMPLITUDE GR | ) TIME-OF-ELIGHT i i

E - : Fig. 5. Ultrasonic imaging log showing natural fractures with a
L. C. Pereira (MSc, 2007) R b e cross-section showing borehole breakout in a NE-SW direction.

A breakout is the evidence of wall yield (the formation
strength at the borehole wall is exceeded). A breakout is
not considered to be a borehole failure since the borehole
remains useful. Borehole breakout can be measured
using four- or six-arm caliper tools. The preferred tool,
however, is the ultrasonic imaging tool, which makes up
to 200-caliper measurements at every depth level.

Fig. 4. Directions of borehole breakout and fractures in relation to
the orientation of the horizontal stress field.

M.Y. Soliman®, Paul Boonen Journal of Petroleum Science and Engineering 25 (2000) 187-204
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HYDRAULIC FRACTURING :FPE

fracture perpendicular

fracture parallel
to wellbore

to wellbore

Pressurized fuid

Pressurized fuid
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(Deng et al. 2004 ;
Meng et al. 2010)
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Finite Elements with embedded discontinuities M

[J The discontinuity path is placed inside the elements
irrespective of the size and specific orientation.

(Leila Beserra, PhD)

™~

Discontinuity tracingin a Finite Element divided by
domain discontinuity

Oliver et al. (1999), Oliver (2000)



FLUID FLOW IN DISCONTINUITIES fﬂ&

Darcy Flow in domain q, = _KQ -VP The fluid flow law for the
discontinuity portion considers

Darcy Flow in discontinuity 4g = -K.t-VP only the flow in its direction

q
Continuity n- (qQ _ qS) ~0 t
("TTTTTTT T <--~~> Equivalent
Ao =(-Kq ~ 7t ®K, )iVP  Joresolly

[u,] 2 Normal jump
Aperture




HYDRO MECHANICAL COUPLING fﬂ&

Traction Continuity (total stress):
n-(6,;—65)=0

Effective stress:

6'= 6Pl €= €+ V' (1]

(Sim6 et al. 1993)

Traction Continuity (effective stress):

n-(¢,—akf,J-¢+aPl)=0

Constitutive Relation

)
| _ e .,
6, =D 1&g,

6y = (1-d)D°: g




TENSILE DAMAGE MODEL f!?

—

o= (1—-do iftr(g) >0

o=0 iftr(c)<0

06 = C: € Effective stresses (elastic) compression /

A
O,

= Damage criterion

¢=01—q(r) <0

Tl

First principal Softening law
stress (fracture

energy)




UFPE

Interface Finite Elements Formulation

Triangular element / strong discontinuity kinematics (Marcela Seixas, PhD)

Finite element with high ] Weak/strong discontinuity
aspect ratio kinematics

Same kinematics 1!

MANZOLI et al, 2012
Computers and Structures 94-95 (2012) 70-82
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Fracturing of rocks with Interface Finite Elements

Technique

UFPE

Initial Finite Element mesh
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Fracturing of rocks with Interface Finite Elements
Technique

UFPE

Initial Finite Element mesh
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Interface finite elements are inserted throughout the mesh or in the most
requested area of the mesh. Depending on the boundary conditions of the
problem and stress states resulting, the elements will be opening by a
preferential path, forming a fracture and relaxing the stress in other candidate
elements at the same time.




Fracturing of rocks with Interface Finite Elements
Technique

Initial Finite Element mesh .
tia te tlement mes Interface Finite Elements
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Leak-off test

CASE 2: 2D situation

Oy = 1MPA

Q=6x10"kg/s

ov=1MPa (oy )=5 MPa
ox=2MPa

tensile strength of material :



Leak-off test

pl

12444
1.0889

- 0.93333

- 0.77778
0.62222

- 0.46667
031111
0.15556
-1.3763e-12



Strong Discontinuity Approach and Interface Finite Element =

liquid pressure (MPa)

= |Nterface FE
SD Approach

0 S I
100000 150000

T | T |
200000 250000 300000 350000

time (s)

|
400000

| T |
450000 500000 550000 600000

Strong Discontinuity Approach

Interface Finite Element

Nodes 1595 10256
Elements 2993 20162
CPU time (s) 1210.51 6289.43




UFPE

Unconvetional Reservoirs: Fracturated and Shale Gas

Geomechanics of Fracturated Reservoirs

Much more
complex behavior
of fractures...




Improvement of constitutive of interface elements ureE

Up to now: isotropic tensile damage model (model)

Improvements: shear modes (Il and Ill) and inelastic effects due to dilatancy and compression
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Fracture Propagation w
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1.0457
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Proppant Migration and Agglomeration

Physical modeling Numerical modeling

Fig. 8 A set of particles settling
in Newtonian fluid

S . .. Tomac and Gutierrez (2015) (1= 0.01 Pas)
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Fig. 1 Experimental results of particle settling in 1.25 % aqueous sl v (*) .
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Wedging of Aperture and Self-Propping Behavior of Shear-Displaced Fractures [ cceault & McLennan
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Proppant Behavior During Production

Response of propping agents to fracture closure pressure
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Fracture Network Modeling i

Colombian naturally fractured, low porosity sandstone reservoir
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Normal Closure Modeling
Barton & Bandis
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Net deformation of the joints NORMAL CLOSURE OF JOINTS
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In Situ Stress State i‘?

Pf G, O, Oy

175 m




Fracture Closure Problem
Boundary and Initial Conditions and Material Properties

o, ~ 100MPa

AR

Properties
Young's modulus 10 Gpa
Poisson 0.30
Rock Permeability 1029 m?
Initial Aperture of Fractures 10°m

Barton & Bandis modulus (K. ;) 100
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Permeability Field
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FLUID PRESSURE PROPAGATION

UFPE
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] HF Validation: Microseismicity

L



Massive Multi-Stage Hydraulic Fracturing
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Enhanced Microselsmics

Synthetic Rock Mass Models
and Synthetic Selsmicity

Microseisimic Analysis
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Fracture Network Engineering applied to hydraulic fracturing.

Nagel et al., 2011
SPE 140480

Microseismic monitoring:

Shows the spatial distribution
and magnitude of seismicity
associated with bedding plane
slip as well as slip of natural
and incipient fractures

Effective monitoring of
hydraulic fracturing
stimulations is critical to their
optimization, and the
evaluation of field
microseismic data is now
commonly used in many of
the active shale
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SPE 140480
“'
Simulating Hydraulic Fracturing in Real Fractured Rock - Overcoming the WJ‘SPE Qil
s s ‘¥ International
Limits of Pseudo3D Models e
Neal Nagel, Ivan Gil, and Marisela Sanchez-Nagel, SPE, Itasca Houston, Inc., Branko Damjanac, Itasca Consulting
Group, Inc.
3DEC DP 4.20

20009 tasca Consulting Oroup, INc
Step 16016
M7222010 20237 PM

Pore pressure

Pore pressure
distribution

Three-Dimensional DEM Simulation of Hydraulic Injection into a Fractured Medium

Discrete element models (DEM), in which both matrix block behavior and fracture
behavior are explicitly modeled, offer one option for the specific modeling of
hydraulic fracture creation and growth in naturally fractured formation without,
for example, the assumption of bi-planar fracture growth.




Massive Multi-Stage Hydraulic Fracturing
Mathematical Modeling
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SPE 140480
o \"
Simulating Hydraulic Fracturing in Real Fractured Rock - Overcoming the “:5;55:&
Limits of Pseudo3D Models " 4.
Neal Nagel, Ivan Gil, and Marisela Sanchez-Nagel, SPE, Itasca Houston, Inc., Branko Damjanac, Itasca Consulting
Group, Inc.
3DEC_DP 4.20
Step 16016 -
S — Shear and tensile
Joint Slip .
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Three-Dimensional DEM Simulation of Hydraulic Injection into a Fractured Medium

Discrete element models (DEM), in which both matrix block behavior and fracture
behavior are explicitly modeled, offer one option for the specific modeling of
hydraulic fracture creation and growth in naturally fractured formation without,
for example, the assumption of bi-planar fracture growth.
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SPE 140480

Simulating Hydraulic Fracturing in Real Fractured Rock - Overcoming the

Limits of Pseudo3D Models

Neal Nagel, Ivan Gil, and Marisela Sanchez-Nagel, SPE, Itasca Houston, Inc., Branko Damjanac, Itasca Consulting

Group, Inc.
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The lower the friction
angle, the more dry
events were
recorded, with a
significant jump
between the 27
degree and 20 degree
cases.

- Rock failure - the cause of microseismicity - is a result of changes in the in-situ effective stresses relative to a

given rock strength.

- Effective stress - which is the stress acting on the rock matrix - may change either through a change in pore
pressure (leading to ‘wet’ microseismicity) or through a change in the total stress (leading to ‘dry’

microseismicity).

- Dry microseismicity may occur beyond the pressure field and be hydraulically disconnected from the wellbore.
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Changes in injection rate showed a clear effect on the amount of tensile failure being triggered as a result of injection. _Increases in
injection rate greatly increased the amount of tensile failure within the model. These results were somewhat expected as higher

injection rates, translate into higher injection pressures and more energy available for rock failure near the injection well.
Furthermore, the results suggested that lower injection rates favored the creation of shear failure. Despite the short time scale of
these simulations, this behavior suggests the very interesting possibility of using injection rate as a parameter to actively control

the amount and type of failure to be generated during a fracturing job.
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Nagel et al., 2011 SPE 140480
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The amount of shear failure generated as a result of fluid injection showed a very distinct response to changes in fluid viscosity. In_
the case where low viscosity fluid (# = 1 cP) was injected, the amount of area failing in shear was dramatically higher than in the

cases with higher viscosity fluids (# > 100 cP). Moreover, such difference appears to increase even more with time. When the
ratio of shear to tensile areas was plotted as a function of time, a similar picture emerged: the ratio of shear to tensile area being
generated for the case with low viscosity was about an order of magnitude higher than in the cases with high viscosity fluids.
Once again, and despite the short scale of the simulation run here, this results suggest that fluid viscosity has the potential to
change the way a reservoir reacts (and fails) when subjected to fluid injection.
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Nagel et al., 2011 SPE 140480
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Validation
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[] Final Remarks
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FINAL REMARKS w

=>» Strong coupling between fluid flow and deformations (Coupled HM Problem).

=>» A strong impact of the natural fractures and initial stress state (with many
uncertainties about both).

=>» Natural fracture network must be represented into the numerical model.

=>» Packing of proppant into fractures, with the liquid propagating far beyond the
sand zone.

=>» Models for proppant migration and fracture closure with proppant are needed.

=>» Evaluation of field microseismic data is now commonly used to monitor
hydraulic fracturing stimulations (validation of the geomechanical model).

=>» Validation of MMHF (Massive Multi-Stage Hydraulic Fracturing) at field scale is
still a challenge.



