

Introduction to Reservoir Geomechanics

1 Introduction

Definitions and some challenges of reservoir geomechanics. Modeling of coupled phenomena.

2 Constitutive Laws: Behavior of Rocks Fundamentals of Pore-Mechanics.

3 Constitutive Laws: Behavior of Fractures Geomechanics of Fractured Media.

4 Reservoir Geomechanics

Elements of a geomechanical model and applications.

5 Unconventional Reservoirs

Naturally fractured reservoirs, hydraulic fracture, proppant and fracture closure model, validation (microseismicity).

6 Advanced Topics

Injection of reactive fluids and rock integrity.

Geochemical Coupling

Civil Engineering

Heave in a tunnel excavated in sulphate bearing rock (Belchen tunnel)

Mining Engineering

TE

Castellanza et al. (2005)

Effects of weathering of pillars in abandoned iron mines (Northern France)

Chemical mechanism: new material characterization

Long term stability of mineworkins and quarries (De Genaro, 2006):

Geotechnical data :

- pillar deformations
- roof and floor deformations
- pore water pressure

Environmental data :

- atmosphere temperature
- rock temperature
- hygrometry
- Water table level in the quarry
- atmosphere composition (CO₂, O)
- Variations of water table
- geochemical analysis of water (and solid phase)

New Motivation:

Carbonatic Oil Reservoirs

Brazilian **Pre-Salt** Reservoirs (ultra-deep waters reservoir):

- Reservoir and cap rocks integrity (geomechanical and chemical)
- Reservoir properties (coupled HMC phenomena)
- CO2 injection (multiphase multispecies modeling)

CO2 underground geological storage:

CO2 underground geological storage:

Carbonate reservoirs: new deformational mechanisms can take place in the medium

 $CO_2 + H_2O = HCO_3^- + H^+$

(water acidification)

 $CaCO_{3}(s) + H^{+} = Ca^{2+} + HCO_{3}^{-}$

(calcite dissolution)

Waterweakening Chemo-mechanical mechanism

How can the geological CO₂ storage be done?

➢ <u>Oil fields</u>

- 1- Depleted reservoirs (gas/oil)
- 2- Enhanced oil recovery

Saline Aquifers;

3- Deep unused saline water-saturated reservoir rocks.

- Coal layers.
- 4- Deep Unmineable coal
- 5- ECBM Recovery

How does CO2 behave when injected into geological formations?

What can happen in porous media following CO2 injection?

Main mechanisms to storage CO₂ into geological formations

Physical Chemical

Fluid flow due to natural hydraulic gradientes and injection process:	Buoyancy caused by the density differences between CO2 and the	Diffusion, dispersion and fingering caused by constrast between CO2	Dissolution into the formation fluid and porous media	Precipitation/ mineralization into the porous media	Adsorption of CO2 onto organic material	Pore space trapping	-
, ,	formation fluid;	injected and formation fluids:					

What can happen in porous media following CO2 injection?

Dissolution of porous media

- **1.** CO_{2(g)}
- 2. CO_{2(aq)}
 - **3**. $CO_{2(aq)} + H_2O_{(I)} \leftrightarrow H_2CO_{3(aq)}$
 - **4.** $H_2CO_{3(aq)} \leftrightarrow HCO_{3^-(aq)} + H^+_{(aq)}$

What can happen in porous media following CO2 injection? Solid phase \rightarrow ionized absorbed react liquid phase **Dissolution of porous media 1.** CO_{2(g)} 2. CO_{2(aq)} **3.** $CO_{2(aq)} + H_2O_{(I)} \leftrightarrow H_2CO_{3(aq)}$ 4. $H_2CO_{3(aq)} \leftrightarrow HCO_3^{-}_{(aq)} + H^+_{(aq)}$ 5. $CaCO_{3 (s)} + H^{+}_{(aq)} \leftrightarrow HCO_{3}^{-}_{(aq)} + Ca^{2+}_{(aq)}$ 5

What can happen in porous media following CO2 injection?

Precipitation and mineralization into the porous media

- **1.** CO_{2(g)}
- 2. CO_{2(aq)}
 - 3. $CO_{2(aq)} + H_2O_{(I)} \leftrightarrow H_2CO_{3(aq)}$ 4. $H_2CO_{3(aq)} \leftrightarrow HCO_3^{-}_{(aq)} + H^+_{(aq)}$
 - 5. $HCO_3^{-}_{(aq)} + Ca^{2+}_{(aq)} \leftrightarrow CaCO_3^{-}_{(s)} + H^+_{(aq)}$

Challenges: quantify changes of porosity and permeability due to precipitation.

Distributed precipitation

Changes in Porosity and Permeability

Precipitation located Formation of disconnected porous

The permeability is greatly affected, not porosity.

The only way to solve this problem is by perfoming experiments

Randhol & Larsen, 2010 (SINTEF Petroleum Research) III International Seminar on Oilfield Water Management

The **species** are:

- mineral (-) : main mineral
- water (w) : as liquid or evaporated in the gas phase
- air (a) : dry air, as gas or dissolved in the liquid phase
- chemical species : interacting (reactive) species

The three phases are:

- **gas** (g) : mixture of dry air and water vapour
- liquid (/): water + air dissolved + dissolved chemical species
- solid (s) : main mineral + absorbed cations + precipitated minerals

Reactive transport equations

Reactive transport equations

$$\frac{\partial}{\partial t}(\phi S_w \rho_w c_i) + \nabla \cdot \mathbf{j}_i = \mathbf{R}_i \quad (i = 1, ..., N)$$

□ CHEMICAL INTERACTION OF *N* INTERACTING SPECIES

- Slow reactions: kinetics controlled
- Fast reactions: equilibrium controlled
- PHENOMENA CONSIDERED
 - Homogeneous reactions
 - Aqueous complex formation
 - Acid/base reactions
 - Oxidation/reduction reactions
 - Heterogeneous reactions
 - Cation exchange
 - Dissolution/precipitation of minerals (equilibrium and kinetics)
 - Other reactions
 - Radioactive decay
 - Linear sorption

Reactive transport equations

$$\frac{\partial}{\partial t}(\phi S_l \rho_l c_i) + \nabla \cdot \mathbf{j}_i = R_i \quad (i = 1, ..., N)$$

□ CHEMICAL INTERACTION OF **N** INTERACTING SPECIES

Slow reactions: kinetics controlled

 Rate of species production in kineticscontrolled reactions

$$\mathcal{V}_{m} = A_{m}k_{m}\left|\Omega_{p}^{r}-1\right|^{n}$$
$$\Omega_{p} = \frac{Q_{m}}{K_{m}} ; \qquad Q_{m} = \prod_{j=1}^{N_{c}}a_{j}^{v_{mj}}$$
$$k_{m} = k_{25}\exp\left[\frac{-E_{a}}{R}\left(\frac{1}{T}-\frac{1}{298.15}\right)\right]$$

□ Fast reactions: equilibrium controlled

 A chemical equilibrium model is uses based on the minimization of Gibbs free energy

$$\begin{aligned} \underset{n_{j}^{c}, n_{i}^{x}}{minimize} \quad G &= \sum_{j=1}^{N_{c}} \mu_{j}^{c} n_{j}^{c} + \sum_{i=1}^{N_{x}} \mu_{i}^{x} n_{i}^{x} \\ n_{j}^{U} &= n_{j}^{c} + \sum_{i=1}^{N_{x}} \nu_{ij} n_{i}^{x} \quad (j = 1, ..., N_{c}) \\ n_{i}^{x} &\geq 0 \quad (i = 1, ..., N_{x}) \\ n_{j}^{c} &\geq 0 \quad (j = 1, ..., N_{c}) \end{aligned}$$

- Newton-Raphson algorithm
- Lagrange multipliers to incorporate the restrictions of the system

NUMERICAL IMPLEMENTATION NEWTON-RAPHSON

• Reactive Transport Equations

$$\frac{\partial}{\partial t}(\phi S_l \rho_l U_j) + \nabla \cdot \left(\rho_l U a_j \mathbf{q}_l + \mathbf{D}_l \nabla U a_j + \phi S_l \rho_l U_j \dot{\mathbf{u}}\right) + R_j^{irrev} = 0 \quad (j = 1, ..., N_c)$$

• Analogy with the mechanical problem

Mechanical problem for geomaterials:

Equilibrium Equation:

п

$$\nabla \boldsymbol{\sigma} + \boldsymbol{b} = \boldsymbol{0}$$

Principle of Effective Stresses:

HYDRO-MECHANICAL COUPLINGS:

Rock porosity:

$$\frac{\partial}{\partial t} [(1-\phi)\rho_s] + \nabla [(1-\phi)\rho_s.\dot{\mathbf{u}}] = 0 \qquad \text{(mass conservation of solids)}$$

$$\frac{d \bullet}{dt} = \frac{\partial}{\partial t} + \dot{\mathbf{u}} \cdot \nabla \bullet$$

$$\frac{d \phi}{dt} = \frac{(1-\phi)}{\rho_s} \frac{d\rho_s}{dt} + (1-\phi) \frac{d\varepsilon_v}{dt} \qquad \text{(changes of porosity as a function of volumetric strains)}$$

Rock permeability:

$$\mathbf{k} = \mathbf{k}_{i} \exp[b(\phi - \phi_{i})]$$

Rock permeability:

$$\mathbf{k} = \mathbf{k}_{i} \exp[b(\phi - \phi_{i})]$$

Changes of porosity due to mineral dissolution/precipitation:

$$\frac{D\phi}{Dt} = \frac{(1-\phi)}{\rho_s} \frac{D\rho_s}{Dt} + (1-\phi)\nabla \cdot \dot{\mathbf{u}} \left(-\frac{Dv_T}{Dt}\right)$$

chemical changes of porosity

 $v_T = \text{total mineral volume} = \sum_m \overline{v}_m c_m$

 \overline{v}_m : molar volume (m³/mol) of mineral m

 c_m : concentration (mol/m³ of rock) of mineral m

Intrinsic permeability changes:

 $\mathbf{k}(\phi) = \mathbf{k}(\text{mechanical, thermical and chemical problems})$

Numerical implementation (Compiler: Intel Fortran; IDE: CodeBlocks; OS: Linux)

- Numerical approach
- Finite elements in space
- Finite differences in time
- Implicit time integration
- Simultaneous solution of the mechanical, hydraulic, thermal and reactive transport equations
- Full Newton-Raphson for iterative procedure to solve the set of nonlinear equations
- Solver (non-symmetric matrix)
 - LU decomposition and backsubstitution
 - Conjugate Gradient Squared Method with block diagonal preconditioning
 - PARDISO (MKL)
- Convergence tolerances in terms of variable corrections and residuals
- Coupled to a reactive transport module

Main features

- Coupled thermo-hydro-mechanicalchemical (THMC) analyses in 1, 2 and 3 dimensions
- Partial analyses are possible
- General treatment of transport processes
- Specific consideration of unsaturated porous media under non-isothermal conditions:
 - Constitutive laws (thermal, hydraulic, mechanical)
 - Equilibrium restrictions (vapour pressure, air dissolution)
 - Chemical equilibrium and kinetics for chemical species interaction
- Thermo-hydro-mechanical joint element
- Sequential and parallel versions
- Staggered fully-coupled scheme THM C

Numerical implementation (Compiler: Intel Fortran; IDE: CodeBlocks; OS: Linux)

Wellbore/Reservoir geomechanics

Integrity of Carbonate Rocks Subjected to Mechanical and Chemical Actions

Matrix:

Fracture:

B.R. Ellis et al. / Energy Procedia 4 (2011) 5327-5334

RESEARCH LINES – LABORATORY TESTS

Integrity of Carbonate Rocks Subjected to Mechanical and Chemical Actions

Fracture:

2D and 3D MODEL

- mineral: randomically distributed

2D and 3D MODEL

- porosity and permeability: constants
 - mineral: randomically distributed

2D MODEL

2D and 3D MODEL

(Pereira & Fernandes, 2009)

step 5.44591e+7 Contour Fill of X 5.

step 5.44591e+07 Contour Fill of Por.,otherG.

Clique aqui!

step 5.44591e+07 Contour Fill of Ua 2.

Chemo-mechanical constitutive model:

$$\dot{\varepsilon}_{vol}^{che} = \frac{D\varepsilon_{vol}^{che}}{Dt} = \eta \frac{1}{(1-\phi)} \frac{Dv_T}{Dt}$$
Cristal Growth
$$v_T = \text{total mineral volume} = \sum_m \overline{v}_m c_m$$
Chemical compaction
$$\overline{v}_m : \text{molar volume (m^3/mol) of mineral } m$$

$$c_m : \text{concentration (mol/m^3 of rock) of mineral } m$$

$$\eta : \text{parameter}$$

Linear-elastic law including chemical (volumetric) strains:

$$\dot{\sigma} = D_e(\dot{\varepsilon} - m\dot{\varepsilon}_{vol}^{che})$$

High-speed Railway Madrid – Barcelona

length: 629 km

adif

Lilla

Puig

Cabrer

Railway Authority

Tunnels in Section Lleida-Martorell

Camp

Magre

Tunnel	Length	Maximum Cover	Excavated Cross-Section	
	(m)	(m)	(m²)	
Camp Magre	954	52	140	
Lilla	2034	110	117	
Puig Cabrer	607	191	137	

Excavated in 2001-2002 by drill and blast (head and bench) from the two portals

The Tertiary Anhydritic-Gypsiferous Claystone from the Lilla Tunnel

the excavated material

slickenside

cross-shaped fibrous gypsum veins

Lilla tunnel: field observations

Lilla tunnel: field observations

Total Radial Pressures at the invert sections May-03 Aug-03 Nov-03 Dec-02 Jun-03 Sep-03 Dec-03 May-04 Jan-03 Feb-03 Mar-03 Apr-03 Oct-03 Mar-04 Jun-04 Jan-04 Feb-04 Apr-04 Jul-03 Jul-04 6.0 Invert: 60 cm R#6.46M 411+829 CPTR-3 Invert: 40 cm 5.0 -411+609 CPTR-1 Total radial pressure (MPa) Concreting the invert 411+629 CPTR-1 4.0 -CPTR-1 11+669 CPTR-1 CPTR-2 11+769 CPTR-1 411+749 CPTR-3 3.0 2.0 411+589 CPTR-3 1.0 0.0 100 200 300 400 500 600 0 700 Time (days)

Heave in sulphate bearing rock: analysis

Anhydrite: $Ca^{2+} + SO_4^{2-}$

Gypsum:
$$Ca^{2+} + SO_4^{2-} + 2H_2O$$

Anhydrite

Gypsum

- The molar volume of gypsum is 62% larger than that of anhydrite
- Direct transformation is apparently not possible
- O Conversion from anhydrite to gypsum is via dissolution precipitation

Sulphate-Bearing Clayey Rocks

Expansive Behaviour

TRANSFORMATION OF ANHYDRITE INTO GYPSUM IN AN OPEN SYSTEM

EURO:TUN 2009

2nd International Conference on Computational Methods in Tunnelling Ruhr University Bochum, 9-11 September 2009 Aedificatio Publishers, 1-4

HMC analysis of a tunnel in swelling rock

Ivan Berdugo¹, Leonardo do N. Guimarães², Antonio Gens³, Eduardo E. Alonso³ ¹Department of Civil Engineering, PUJ, Bogotá, Colombia ²Universidade Federal de Pernambuco, Recife, Brazil ³Department of Geotechnical Engineering and Geosciences, Technical University of Catalonia, Barcelona, Spain

Gens, A. (2010). Géotechnique 60, No. 1, 3-74 [doi: 10.1680/geot.9.P.109]

Soil-environment interactions in geotechnical engineering

A. $GENS^*$

Mineral Dissolution and the Evolution of k_0

Hosung Shin¹ and J. Carlos Santamarina²

JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / AUGUST 2009 / 1141

3D PLUG MODEL

Sample dimensions: 10x10x10cm

At well and reservoir scales...

 σ_{v}

σ

Cement dissolution under load can cause:

- Faults...

A numerical tool capable to evaluate the integrity of reservoir and cap rocks has been presented considering a number of HM and HMC phenomena.

Consideration of chemical effects requires the incorporation of:

- New (environmental) variable: concentration of chemical species
- New balance equation: reactive transport equation
- Chemical models accounting for kinetics and chemical equilibrium are required

Mineral concentration was adopted as a state variable of a simplified chemo-mechanical constitutive model that was able to reproduce qualitatively deformations induced by cement dissolution.